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Wireless sensor networks are attractive largely because they need no wired infrastructure. But 
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ples for energy efficient wireless communication and the energy-wise trade-off between 
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To assess the measurement capability of the network as a whole, and to facilitate a study of 
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sensing has decisive impact on the best multi-hop routes. We also find support for the use of 
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Sammandrag
(Summary in Swedish)

Trådlösa sensornätverk – Energieffektiv kommunika-

tion och mätaspekter

Små självständiga sensorer utrustade med mikroprocessorer och radio för
trådlös kommunikation kan tillsammans bilda trådlösa sensornätverk. Tack
vare den trådlösa kommunikationen kan sensornätverken användas för en
rad uppgifter som annars skulle ha varit praktiskt ogenomförbara. Ett av
de mest kända exemplen är ett forskningsprojekt på Great Duck Island i
Kanada. Där studerades fåglar och deras häckningsbeteende med hjälp
av sensorer som registrerade fåglarnas närvaro vid boet samt omgivande
omständigheter såsom temperatur, luftfuktighet och lufttryck. Med tråd-
bundna sensorer hade projektet blivit ytterst komplicerat och dyrt. Ett
annat exempel är övervakning och diagnos av byggnadsverks och konstruk-
tioners tillstånd för att kunna undvika olyckor som broras eller vingbrott hos
flygplan. Vidare kan sensornätverk användas för hälsoövervakning, trådlös
automatisk styrning av industriprocesser, diagnos och styrning av funktioner
i "smarta" hus, detektion av utsläpp av farliga kemikalier, övervakning i säk-
erhetssyfte, målföljning i militära sammanhang, understöd i katastrofområ-
den samt forskningsprojekt på svårtillgängliga platser som glaciärer.

Begränsad energi. Många användningsområden är beroende av den tråd-
lösa kommunikationen, men tyvärr orsakar just trådlösheten ett av de största
bekymren för sensornätverken och deras funktion, nämligen en starkt be-
gränsad energitillgång. Denna begränsning får långtgående konsekvenser för
utformningen av allt från elektronik till algoritmer för mätdataanalys. I av-
handlingen undersöker jag konsekvenserna för den trådlösa kommunikationen
och vilka avvägningar som måste göras på sensor- respektive nätverksnivå.
Jag studerar specifikt avvägningen mellan den fasta energiförbrukningen i ra-
dioelektroniken och den rörliga nyttoförbrukningen av sändningsenergi. En
slutsats är att många av dagens tillgängliga sensornoder inte kan utnyttja de
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optimala avvägningarna på grund av att den fasta energiförbrukningen är för
stor i förhållande till den maximala nyttoenergin radion kan uppbåda. En
del allmänt accepterade sändningstekniker bör därför ifrågasättas eftersom
de medför just stor fast energiförbrukning. Jag undersöker också hur stor-
leksförhållandet mellan kommunikationsenergi och mätenergi påverkar det
totala nätverkets funktion och mätkapacitet, och finner att förhållandet kan
ha avgörande betydelse för vilken kommunikationsteknik som bör användas.

Ofullständig information och osäkerheter. En viktig aspekt i alla
beräkningar är vår osäkerhet rörande verkligheten och hur vi ska kunna
dra befogade, kvantitativa, slutsatser även när viktiga faktorer bara är ofull-
ständigt kända. Min kvantifiering av osäkerheter och användandet av denna
i mina analyser är ett genomgående bidrag i avhandlingen, och visar tydligt
att osökerheten inte bör ignoreras.

Jag använder i den här avhandlingen sannolikhetslära som en utvidg-
ning av den deduktiva logiken och ser sannolikheter som representationer av
ofullständig information. Denna logiska tolkning av sannolikhet – framförd
av personer som Laplace, Jeffreys, Cox och Jaynes – bygger på ett fåtal
generella och grundläggande principer för kvantitativ slutledning. Pierre
Simon de Laplace och Harold Jeffreys använde framgångsrikt sannolikhets-
lära för kvantitativ slutledning, men det var Richard Cox som formellt
ställde teorin på stabil grund. Han visade att de välkända produkt- och
summareglerna i sannolikhetsläran är de enda räkneregler som uppfyller
ytterst basala krav på en konsekvent slutledningsmetod som aldrig står i
uppenbar motsättning till sunt förnuft. Den generella utgångspunkten ger
sannolikhetsläran närmast obegränsat tillämpningsområde.

Det logiska synsättet skiljer sig i några avseenden markant från det
etablerade synsättet. Det etablerade synsättet är att sannolikheter i någon
mening är fysiska och i princip kan bestämmas som den relativa frekvensen
för ett utfall – till exempel klave i en slantsingling – i ett oändligt antal
upprepade försök. "Mätbar" sannolikhet har följaktligen giltighet endast för
"slumpmässiga" fenomen, och är inte tillämpbar för andra storheter – de
som är "deterministiska men okända". Trots att tolkningsfrågan kan verka
rent filosofisk så får synsättet praktiska konsekvenser.

Ställda inför insikten att frekvensdefinitionen av sannolikhetslära
inte kunde tillämpas på de flesta verkliga vetenskapliga proble-
men så uppfanns ett nytt ämne – statistik.

Sivia (1996)
Den frekventistiska tolkningen som genomsyrar konventionell statistik – för-
knippad med namn som Fisher, Feller, Neyman och Pearson – medför onödiga
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begränsningar i antalet användningsområden för sannolikhetslära och berö-
var oss också ett par användbara, och ibland nödvändiga, verktyg. Jag
behöver i mina problem kunna hantera otygsparametrar1, ansätta prior-för-
delningar baserade på "datalös" information, samt få ett relevant osäker-
hetsmått i slutet av mina analyser.

Mätningar av trådlösa kanaler

Den trådlösa kanalens egenskaper har mycket stor inverkan på sändningsen-
ergin. En viktig faktor är graden av variation i den mottagna signalen, den så
kallade fädningen, och ett mycket vanligt antagande är att kanalen varierar
enligt Rayleigh-modellen. Dock finns indikationer på att andra modeller bät-
tre beskriver fädningen genom att ta med olika grader av fädning. För oss är
fädningsgraden viktig eftersom den påverkar sändningsenergin kraftigt, och
ett Rayleigh-antagande bör därför vara mycket välmotiverat för att använ-
das. Jag har genomfört mätningar inomhus och utomhus under förhållanden
som är typiska för sensornätverk: antennerna nära marken, väggen eller golv-
et. Min analys visar ett fädningsgraden relativt ofta avviker märkbart från
Rayleigh-modellen och resultatet stöder istället användandet av Nakagami-
m-modellen. Denna modell inkluderar fädningsgraden genom parametern m
som därmed är en viktig parameter – en otygsparameter – i mina analyser.

Kraftiga kanalvariationer kan motverkas genom att sprida den sända in-
formationen över flera kanaler som varierar olika, till exempel med hjälp
av flera antenner, och därmed minska risken att information går förlorad.
För de små sensornoderna är problemet att rumsspridning typiskt kräver
ett större antennavstånd än sensornodens storlek. Däremot skulle anten-
ner för polarisationsspridning kunna göras kompakta och därmed vara ett
bra alternativ. Förutsättningen är dock att de olika polarisationskanalerna
varierar oberoende av varandra. Mina mätningar visar lovande resultat
med närmast obefintliga korrelationer mellan de vertikala och horisontella
polarisationerna. Dessutom minskar korrelationen när fädningsgraden ökar
– spridningsmöjligheten är bäst när den behövs mest.

Trådlös kommunikation med fasta kostnader

Jag studerar den totala energiförbrukningen för radiokommunikationen, både
den fasta förbrukningen i radioelektroniken och den rörliga sändningsenergin,

1Engelska: nuisance parameters.
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och valet av sändningsteknik bestäms till stora delar av kvoten

ρ′ =
rörlig sändningsenergi
total fast kretsenergi

,

som jag använder genomgående i avhandlingen. Det optimala valet tenderar
att balansera fast och rörliga kostnader så att, typiskt, 0,5< ρ′ <5. En radio
bör alltså, med lite marginal, ha en maximal kvot på åtminstone ρ′max = 5 för
att kunna välja den optimala tekniken. Dagens radior har sällan ρ′max > 0, 5.

Jag studerar följande sätt att väga av fast mot rörlig energiförbrukning.

Effektreglering. Sändaren justerar sin utsända effekt efter kanalens varia-
tioner till priset av att återkopplingsinformation om kanalens kvalitet
medför mer sändningar. Effektreglering är ett bra alternativ för lång-
samma kanalvariationer, då lite återkoppling behövs, och kan ge be-
sparingar för en del av de befintliga radioeneheterna.

Felrättande kodning. Genom att sprida informationen över tiden med
hjälp av koder kan sändningsenergin minskas, men till priset av utökad
sändningstid. Många av dagens radioenheter bör undvika kodning,
men med lite större sändareffekt, ρ′max > 1 skulle besparingarna bli
märkbara.

Adaptiv modulation. Då fasta kostnader dominerar, ρ′ < 1, kan ökad
sändningstakt spara energi genom att minska sändningstiden. Adaptiv
kvadratur amplitudmodulering (QAM) möjliggör detta, men jag drar
slutsatsen att den energikrävande elektronik som krävs för QAM inte
uppvägs av besparingarna. Enklare metoder är att föredra.

Polarisationsspridning hos mottagaren. Mina mätningar visade att för-
utsättningarna för polarisationsspridning finns, och jag finner att polar-
isationsspridning är ett energieffektivt sätt att klara fädande miljöer.
Jag undersöker två metoder för mottagaren, växling mellan två polar-
isationer och koherent kombination av polarisationerna. Växlingen
medför mycket mindre fast energiförbrukning än kombinationen, men
har å andra sidan sämre mottagningsprestanda. Slutsatsen är att
växlingen är att föredra för dagens radioenheter, medan större sänd-
ningseffekt, med ρ′ > 1, skulle göra kombinationsmetoden attraktiv.

Multi-hopp. När radions räckvidd inte räcker ända fram till slutmålet
måste informationen skickas via andra sensorer – en kedja av hopp
leder fram. Men är detta ett energieffektivt sätt? Studeras enbart
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sändningsenergin är svaret ja, och en vanlig slutsats är därför att multi-
hopp sparar energi. Jag kan dock genom att studera totalförbrukningen
se att multi-hopp medför så stora fasta kostnader att det bör undvikas
av alla befintliga radioenheter – hoppa bara när det krävs.

Kooperativ MIMO. Genom att samarbeta kan sensorerna, även om de
bara har en antenn var, sprida informationen över flera rumskanaler
in en MIMO-sändning2. I fädande miljöer kan detta spara mycket
sändningsenergi, men precis som för multi-hopp medför samarbetet
stora fasta energikostnader som överväger i de flesta fall. Dessutom är
besparingen i sändningsenergi starkt beroende av fädningsgraden och
min analys visar att osäkerheten är stor för eventuella besparingar.

Sensornätverkets mätkapacitet

Sett ur ett nätverksperspektiv är det inte säkert att energieffektiva metoder
är de bästa. Om vissa sensorer belastas hårt, till exempel för att de måste
vidarebefordra mycket data, kan det leda till att deras energi snabbt tar slut
och att nätverket därefter fungerar sämre. Jag inför ett nytt mått, kallat
mätkapacitet, som automatiskt inbegriper både energieffektivitet och balans.
Jag utgår från antalet olika sekvenser av mätningar som sensornätverket
kan göra på den givna energibudgeten. Om nätverket kan göra många mät-
ningar – det är energieffektivt – betyder det stor mätkapacitet endast om
mätningarna är någorlunda jämnt fördelade mellan sensorerna – om endast
en nod har energi att mäta finns det bara en möjlig mätsekvens. Mätka-
paciteten är användbar för att avgöra vilka kommunikationsmetoder som är
bra, men också för att planera mätningar så att det minskar den kvarvarande
mätkapaciteten så lite som möjligt.

Mätkapaciteten inbegriper också en avvägning mellan mätenergi och kom-
munikationsenergi. Om den fasta kommunikationsenergin per mätning är
större än själva mätenergin så straffas metoder som multi-hopp eftersom
varje hopp då kostar många mätningar. Förhållandet mellan mätenergin och
den fasta kommunikationsenergin kan vara avgörande för valet av sändnings-
teknik. I de fall multi-hopp ändå lönar sig så kan optimerade sändningsvägar
öka mätkapaciteten, men inte drastiskt. När jag däremot studerar hier-
arkiska nätverk finner jag en kraftigt ökad mätkapacitet som tillsammans
med mina övriga resultat talar starkt för hierarkiska strukturer.

2MIMO, Multiple-Input Multiple-Output, flera sändar- och mottagarantenner.
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Here follows a list of commonly used symbols.

b Number of bits per symbol
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c Branch envelope correlation coefficient
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C Measurement capacity
d Spatial distance
E Energy per unit (per bit, for instance)
ERP Total radio processing energy
EPt Transmitter processing energy
EPr Receiver processing energy
Erad Radiated energy
ET Transmission energy (including losses)
ES Measurement (sensing) energy
E(x|y) Expected value for x given the value of y
fk(x) The kth constraint function in entropy maximisation
Fk The kth constraint value Fk = E(fk(x)|I)
g Power amplifier efficiency degradation exponent
G Power or energy gain
m Nakagami-m fading figure
Ml Link margin
nt Number of transmit nodes in cooperation
nr Number of receive nodes in cooperation
Nf Receiver noise figure
N0 Noise power spectral density
P (A|x, I) Probability for A given x and I
p(x|H, I) Probability density function for x given H and I
P Power consumption
q(x) Ignorance (invariance) measure for x
Rc Code rate for error correcting codes
w Fraction of saved energy
W The multinomial coefficient
WL The Lambert-W , or Product-Log, function
x Channel power gain
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α Receiver-transmitter processing ratio EPr/EPt

β Processing-processing ratio ERP,2/ERP,2

γ Signal-to-noise ratio per bit
γP Signal-to-noise (power) ratio
Γ(x) The gamma function
Γ(x, y) The complementary incomplete gamma function
Δ Diversity order gain
η Power amplifier efficiency
κ Power-law propagation loss exponent
λ Sensor node density
ξ Sensing-to-processing ratio ES/EPt

ρ Transmission-to-processing ratio ET/EPt

ρ′ Transmission-to-total-processing ratio ET/ERP

ρmax Transmitter’s maximum ρ
σ Standard deviation
ς Channel envelope gain

We use the following notation when appropriate.

≡ Definition
x Average (expected value) of x
xmed The median value of p(x|I)
xϕ The ϕth percentile for p(x|I)
x̆ Normalised x
Nak(ς|m, ς) The Nakagami-m probability distribution
Gam(x|m,x) The gamma probability distribution
LogN(x|x, σdB) The log-normal probability distribution





Chapter 1
Energy Constrained Wireless Sensor

Networks

IMAGINE a set of small, self-contained, electronic devices equipped with
sensors and the ability to communicate with each other without wires.

These so-called sensor nodes can then together form a wireless sensor net-
work. Such a network can monitor a region or phenomenon of interest and
provide useful information about it by combining measurements taken by
individual sensor nodes and then communicated over the wireless interface.
We are in this thesis concerned with energy efficient wireless communication
and energy based compromises between sensing and communication.

Wireless sensors with computing capabilities facilitate a range of appli-
cations that have previously been infeasible, or at lest too expensive. For
instance, in a research project on Great Duck Island (Ontario, Canada), the
breeding behaviour of a bird, Leach’s Storm Petrel, was monitored by the
use of a wireless sensor network (Mainwaring et al., 2002). Sensor nodes
equipped with infrared sensors detected the presence of birds inside their
nesting burrows, while other sensors registered environmental parameters
such as temperature, pressure and humidity. Without the wireless sensors,
the April-to-October monitoring would have been practically infeasible. An-
other application area gaining strong interest is that of structural health
monitoring, in which wireless sensor networks are used to monitor struc-
tures such as bridges and nuclear power plants in order to detect damages or
other changes in the structures. Yet other areas, to mention but a few, are
health care, surveillance and security, wireless automation and military tar-
get tracking. Further examples can be found in Romer and Mattern (2004).

1



2 1.1. Energy is a limited resource

In many applications the key feature of a wireless sensor network is that
it is just that, wireless. The use of wired node-to-node connections would
in most applications constitute a severe complication, both practically and
economically, in particular when hundreds of sensors are envisioned. But,
while radio communication is a major enabling technology, the absence of
wires is also the cause of one of the most prominent concerns, limited energy.
Limited energy considerations is a nearly inescapable topic in wireless sensor
network design as it imposes strict constraints on the network operation, and
for this reason limited energy is the underlying theme of the present work.

1.1 Energy is a limited resource

Recharging batteries in a wireless sensor network is sometimes impossible
due to the placement of the sensor nodes, but more commonly it is merely
practically and/or economically infeasible. At any rate, it is widely recog-
nised that, generally, energy is a strictly limited resource in wireless sensor
networks and that the consequences of this limitation must be considered
(Estrin et al., 2001, Shih et al., 2001, Sohrabi et al., 2000).1

Ultimately, if we want to have the sensor network performing satisfacto-
rily for as long as possible, the energy constrained operation of the sensor
nodes forces us to compromise between different activities in the network.
Compromises are needed on the node level as well as on the network level.
Saving energy is tantamount to finding the best compromise, the best trade-
off, between different energy consuming activities and their design.

Example 1.1 Communication or Processing (Pottie and Kaiser, 2000)

Assume that 1024 bits of data are transmitted 100 m at a carrier frequency
of 1 GHz by the use of binary phase shift keying. The communication chan-
nel suffers from fourth order power distance loss (that is an attenuation loss
proportional to d4 where d denotes distance) and Rayleigh fading (severe
fluctuations in channel quality). If our target bit error rate B equals 10−6,
then Pottie and Kaiser (2000) find that the transmission consumes approx-
imately 3 J. Contrast this with a computer processor that performs 108

1A possible counter measure to limited energy is the use of so-called energy harvesting,
that is techniques for extracting energy from environmental sources such as the sunlight.
It appears to us that energy harvesting will be very important, but we note that most
present suggestions deliver relatively little power and in addition require quite specific
conditions. One can for this reason not rely on energy harvesting as a panacea.
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instructions/J (a 100 MIPS/W processor). It will then execute 300 million
instructions on the same energy budget as the transmission. Large energy
savings could thus be achieved if the amount of data to transmit is re-
duced by local processing; we can trade a small increase in data processing
energy for a larger decrease in communication energy. Assuming that the
data consists of 128 eight-bit sensor readings from which we can compute a
single eight-bit arithmetic average using less than one million instructions,
we could save more than 99 percent of the original energy cost by sending
only the average value.2

Based on the recognition in the literature that the radio is a prominent
energy consumer (Raghunathan et al., 2002, Shih et al., 2001), we devote
the present thesis largely to energy efficient radio communication and the
related compromises.

1.1.1 Sharing resources: sensing and communication

Communication between sensor nodes is an idle exercise unless the nodes
perform measurements and have relevant information to send. In the end,
wireless communication is necessary but undesired. It is the information
provided by the sensing that we are after, and the communication techniques
should be chosen to allow the network as a whole to, simply put, deliver
many measurements. The issue of energy efficient communication is of course
implicitly included in this requirement, because the sensors and the radio
share the same battery, but the matter is not quite as simple as choosing the
most efficient transmission scheme from the textbook.

Because individual sensor nodes experience different communication and
sensing energy costs – each possibly depending on the node’s location, the
network topology, the distribution of the monitored events, the communica-
tion environment, etc. – the choice of a certain communication scheme may
be energy-wise good for one sensor node but bad for another. At the end
of the day we do not care about individual nodes, but the overall network
performance. However, the uneven energy consumption between nodes will
influence the network’s ability to provide good performance over time: in
the extreme case, nodes in a certain area can be quickly drained of all en-

2We have modified the example slightly by correcting an error in the calculation and
also exemplified an approximate energy saving for a special case. Further note that all
assumptions are not given in the paper, but these specific details are in any case not
needed for our present illustrative purpose.
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ergy, stop functioning completely and thereby significantly decrease overall
network performance. So, when communication energy efficiency comes at
the price of a severely imbalanced energy consumption across the network,
the efficiency might not be worth its price. How do we know if it is? We
introduce in this thesis a novel way of quantifying a network wide sensing
resource, which we shall call the measurement capacity of the network, based
on the fundamental question of how many different measurement tasks the
network can respond to at a given energy budget. This metric automatically
trades off energy efficiency and energy balance, always having the sensing in
focus, and improves on the existing network lifetime metrics (Dietrich and
Dressler, 2006).

Having observed the importance of seeing the network as a whole, we
recognise that before we address the overall network performance we need to
understand the communication specific compromises that underpin it. With
a better understanding of energy efficient wireless communication in simpler
node-to-node scenarios, and the energy trade-offs involved, we will reduce
the risk of unwarranted assumptions on the network level. Moreover, in the
important class of (heterogeneous) hierarchic networks (Mhatre et al., 2005,
Yarvis et al., 2005) it turns out that low-level energy efficiency is closely
connected to the measurement capacity, much more so than in flat, non-
hierarchical, networks.

1.1.2 Wireless communication under processing costs

The ultimate limit on transmit energy efficient communication over a static
Gaussian channel was given by Shannon (1948a,b), and performance limits
for many other channel conditions are also well-explored in the communica-
tion theory literature, see (Goldsmith, 2005). But when we shift from the
traditional focus on transmission energy to total energy many of the common
“truths” in communication theory are invalidated. And this shift is neces-
sary in our context of energy constrained wireless sensor networks because
the amount of energy consumed by the sensor nodes’ electronic circuits is
well in parity with the amount of transmission energy for most operating
conditions. Example 1.2 illustrates the profound impact that the inclusion
of processing energy can have.
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Example 1.2 Processing Energy and Intermittent Transmission (Youssef-
Massaad, 2005)

The channel capacity defined by Shannon (1948a) for a bandlimited static
channel with additive white Gaussian noise was derived under a pure trans-
mission power constraint. Achieving error free reception at the Shannon
transmission rate requires infinitely long channel codes and the energy-
optimal transmission is continuous, spreading the energy of each symbol
over a long time. Now, if the constraint is instead posed for the total
energy, including a processing energy cost, Youssef-Massaad (2005) shows
that the capacity achieving transmission may have to be intermittent. The
presence of a non-negligible processing cost makes continuous transmis-
sions sub-optimal energy wise, and changes the structure of an optimal
approach entirely.

The most obvious analogy to the discussion above is manufacturing costs;
the production of a “widget” will incur fixed costs (machines, factory build-
ings, etc.) and variable costs (raw material, labour, etc.). We would probably
be dismissed if we ignored the fixed costs when pricing the widgets, unless
the production would be on a scale large enough to make fixed costs negli-
gible relative to the variable costs. In this sense, traditional communication
theory is in the realm of “mass production” where only the variable trans-
mission costs count. We are in this thesis considering the “small production
series” of wireless sensor networks for which fixed processing costs do count.

When considering the energy trade-off between transmission and pro-
cessing costs it is intuitively evident that it must be the relative, not the
absolute, costs that matter: the same transmission choice would be energy-
optimal whether we are considering kJ or nJ per bit as long as the relative
cost is the same.3 Curiously enough, this simple observations is almost never
considered explicitly in the literature on energy constrained wireless sensor
networks. Results are commonly given for specific absolute energies and sys-
tem parameters, and are often presented in terms of a threshold distance:
the inter-node distance at which one transmission technique becomes supe-
rior to another. There is nothing erroneous per se in this approach, but it
introduces an unnecessarily large sensitivity to parameter choices that does
not affect the relative cost. A consequence, which we exemplify later in

3Of course, to the real sensor node and its battery the opposite holds: it is the absolute
values that matter.
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Example 2.1, is that the threshold distance might be misleading if inter-
preted without care. For this reason we use, to the extent it is possible, the
transmission-to-total-processing ratio

ρ′ =
transmission energy

total processing energy
,

which puts the focus on the energy compromise itself: just how dominating
must the transmission energy be to motivate a processing intensive tech-
nique? In this way we avoid sensitivity to many model parameters, but
certainly not all.

1.2 Design choices under uncertainty

Studying a node-to-node wireless link it is fairly straightforward to calculate
the required transmission energy by the use of the well-established standard
models of communication theory, for a given set of model parameter values.
In reality, the model parameters for a planned wireless sensor network are
not accurately known beforehand, and the impact of erroneous assumptions
can be quite dramatic.

Example 1.3 Sensitivity to Assumptions

Previously, in Example 1.1 borrowed from Pottie and Kaiser (2000), we
saw that 3 J of transmission energy could be used to perform 300 million
instructions on a processor. Now, let us consider two channel assumptions
that went into their calculation, namely the fourth order propagation loss
and the Rayleigh fading assumption. These assumptions would probably
be considered within reason by most researchers and developers in the com-
munications field, and they are quite commonly used. On the other hand,
the use of a second order, free-space, propagation loss and a static Gaus-
sian channel is also common in the communications literature. By the use
of these assumptions we find that the transmission energy in Example 1.1
is reduced by a factor 2.2 · 108! Consequently, instead of the 300 million
instructions Pottie and Kaiser concluded we had available, we now get one
single instruction on the transmission energy budget. The conclusion is
suddenly that we should avoid the computer processing.

Upon comparing Example 1.1 and Example 1.3 the unavoidable conclu-
sion is that fixed parameter-value assumptions must be used with care and
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only when we are quite sure they hold in reality, or when the impact of devi-
ations from them is negligible. Still, it is the two extreme fading assumptions
on Rayleigh fading and completely non-fading channels that are in almost
exclusive use in the research on wireless sensor networks.

The design of a wireless sensor network is inherently a design under great
uncertainty, and disregarding its presence can obviously lead to unwarranted
conclusions. We will therefore make use of probability theory as extended
logic to reach conclusions that are defensible under our present uncertainty
regarding influential model parameters. Our interpretation and use of prob-
abilities as carriers of incomplete information – in the spirit of scientists
like Laplace, Jeffreys and Jaynes – differs considerably from the convention-
ally taught interpretation of probabilities as the long-run relative frequen-
cies in repeated trials – following statisticians like Fisher, Neyman, Pearson
and Feller. The frequentist interpretation maintains that probabilities are,
at least in principle, physically measurable as relative frequencies and that
probabilities pertain to “random” phenomena only. All other phenomena or
entities about which we are uncertain, the ones that are “deterministic but
unknown”, can according to the frequentist theory not be associated with
probabilities. Frequentist probability theory is unable to deal with them
consistently.

Faced with the realisation that the frequency definition of prob-
ability theory did not permit most real-life scientific problems to
be addressed, a new subject was invented – statistics!

Sivia (1996)

In contrast to the conventionally taught (frequentist) statistics, the recogni-
tion of probabilities as representing a specific state of knowledge facilitates
a unified approach to inference problems. The theorems of Cox (1946) show
that the ordinary rules of probability theory are (the only) consistent rules
for quantitative reasoning under uncertainty. There is no restriction to rel-
ative frequencies – they are merely a special case – and the need to classify
entities as “random” or “deterministic” is disposed of. Probability theory as
logic helps us to do what we really want, perform the best possible infer-
ence with the information at hand, with the additional benefit of providing
a defensible measure of our uncertainty.

We highlight these different attitudes toward probabilities, not to con-
tinue a century-long debate on the matter, but because we need tools that are
not available to a frequentist, and we want to give the reader a chance to un-
derstand the rationale behind our approach and make sense of our analyses.
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The extended logic approach to inference, mastered by Edwin Thompson
Jaynes, deals effortlessly with two features which cause considerable trouble
in conventional statistics (Jaynes, 2003). First, the parameters that we are
uncertain about are not of primary interest but still require attention due
to their impact on the results – they are nuisance parameters. Conventional
statistics has no coherent principles to apply, while nuisance parameters rep-
resent no principal problem to someone using probability theory as logic.
Second, we must base many of our conclusions on “non-data” prior infor-
mation, and as the use of prior probabilities is denounced in the statistical
theory but recognised as an integral part of inference in the extended logic
framework, our choice is clear.4

1.3 Our topic and related work

The research topic of wireless sensor networks is a large umbrella covering a
very wide range of interests. Almost whatever your interest is, you can find
your niche under this umbrella. Consequently there is an enormous spread
in the contributions to this field, representing different viewpoints, prereq-
uisites and goals. Considering the wealth of interesting studies we feel that
there are, probably due to the application dependent nature of the subject,
surprisingly few fundamental results specific to energy constrained wireless
sensor networks. In the list below we therefore give an overview of topics
and techniques that illustrate some important aspects and general results,
and references that mainly serve as starting points for further reading. The
list is by no means comprehensive, and the reader is referred to surveys like
Akyildiz et al. (2002), or handbooks like Swami et al. (2007) and Ilyas and
Mahgoub (2005), for further reading and references.

Duty cycling. A key technique frequently used is to put nodes to sleep
when they are not actively performing a task; there can be long idle
periods. The electronics will in sleep mode consume orders of magni-
tude less energy than in active mode (Shih et al., 2001). We assume
that duty cycling is used.

Multi-hop communications. Energy losses in wireless transmissions in-
creases super-linearly, dκ, κ > 1, with distance d and at some point
several short hops will be more energy-efficient than a single hop. The
assumption of multi-hop communication is so common that it almost

4We do not denounce the use of conventional statistics, but personally the author sees
no benefit to do so once the efficiency and consistency of probability theory is appreciated.
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appears synonymous to sensor network communication (Akyildiz et al.,
2002), but the trade-off between the radios’ processing and transmis-
sion energies is sometimes overlooked.

Cooperative transmissions. Multi-hopping is one cooperative transmis-
sion technique, but there are other forms of cooperative transmissions.
One proposed technique to lower the communication energy consump-
tion is cooperative MIMO5 involving several nodes transmitting and/or
receiving messages jointly, (Cui et al., 2004).

Distributed processing and local decisions. Sensor nodes need not be
pure sensing devices but can be given some autonomy which allows
them to make local decisions and only spend energy on long-range
communication with the central unit when required by the situation.
The processing could be performed by neighbouring nodes in coopera-
tion.

Hierarchies and heterogeneous networks. Locally, it might be energy
efficient to assign a leader node when, for instance, a few neighbour-
ing nodes perform distributed processing. The use of a leader node
can simplify communication and sleep scheduling (Bandyopadhyay and
Coyle, 2003, Heinzelman et al., 2000). Another hierarchic alternative is
to use different node types designed to be good at different tasks. Such
heterogeneous networks can, for example, alleviate a majority of the
sensor nodes from energy consuming computations on their ill-suited
micro-processors and let a few nodes with more well-suited processors
do the computations (Tsiatsis et al., 2005).

Sensor selection. By adaptively scheduling the activities of the sensor
nodes the networks can utilise gathered information on the present
state of affairs to inactivate sensors not needed and let the nodes best
positioned perform the task (Yang and Heinzelman, 2008).

Scalable hardware. Closely related to duty cycling is scalable hardware
solutions, in this case meaning a hardware platform which adaptively
can scale its energy consumption by shutting down parts of the elec-
tronics or use it at different levels of performance (Wentzloff et al.,
2004). For instance, by lowering the clock frequency of the processor
one can sometimes decrease the power consumption more than the in-
crease in required processing time: the energy consumption is reduced.

5Multiple Input Multiple Output
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Wake-up radio. A problem with putting nodes to sleep is that they can
not be contacted other than during short scheduled time intervals.
One proposed solution is an always-on ultra-low power radio intended
only for external activation; an extremely small listening power allows
a large on-time (Gu and Stankovic, 2004). Such a radio would be
extraordinarily useful in event driven applications if it could be made
energy-efficient enough. The ideal would be a passive, zero power,
wake-up radio with sufficient sensitivity.

Quantisation, data fusion and packet aggregation. When sensor read-
ings are strongly correlated the amount of data to be sent over long
ranges can be reduced by local extraction of the important informa-
tion. Similarly, if multi-hopping is used the data from several sensors
can be fused, and packets aggregated, to facilitate more efficient com-
munication (Rajagopalan and Varshney, 2006).

We are in this thesis primarily concerned with energy constrained oper-
ation in fixed wireless sensor networks designed to monitor a specific spatial
region. In our setting there will always exist a central unit which is “re-
sponsible” for the network operations and to which the information finally
should reach. We are thus broadly considering the class of many-to-one data
gathering networks. In Figure 1.1 we illustrate this type of sensor network
together with some typical activities.

1.4 Outline and contributions

Chapter 2 introduces the models and the related assumptions that we will
make use of in subsequent analyses. These include energy trade-off models
and wireless channel models. We also give, for those unfamiliar with the
theory, an overview of the extension of deductive logic to probability theory
and discuss our use of the theory, which is to provide probability distributions
corresponding to the present uncertainties. The probability distributions we
will use are assigned at the end of the chapter.

A contribution which stretches across the thesis is the quantitative inclu-
sion of uncertainties regarding channel parameters and sensor node positions.
Our aim is to present defensible conclusions based on our present state of
knowledge, but also the uncertainty that they come with. In many cases
the uncertainty can be significant, for instance regarding the possible energy
savings from multi-hop communications.
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Figure 1.1: Data gathering many-to-one network. Wireless sensor nodes
perform sensing tasks, perform local processing and transmit the requested
information to the central sink (at some stage in the process). All operations
are run on limited resources as no nodes, with the central sink as the possible
exception, have wire-line power connection.

1.4.1 Channel measurements and analysis

Chapter 3. There are indications in the literature that the commonly used
Rayleigh fading model has insufficient flexibility to describe many measured
channels accurately. However, no reported measurement campaigns have
been carried out to investigate this under typical sensor network conditions.
We here analyse measurements performed in forest and office environments
for both line-of-sight and non-line-of-sight channels. Transmit and receive
antennas were positioned and/or moved close to the ground, the floor or
the walls to capture conditions relevant for sensor networks. We find from
our analysis that the Rayleigh fading model is indeed inadequate as a gen-
eral fading model. In many cases the fading is less severe than asserted by
the Rayleigh model, and our results support the use of the more flexible
Nakagami-m fading model. This model lacks a precise physical interpre-
tation, but by studying it from a maximum entropy viewpoint we can at
least pin down the macroscopic constraint which, if imposed together with
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an average power constraint, leads to the Nakagami-m model.
Additionally, our measurements reveal that different polarisations show

very good diversity properties. We find very small correlations between the
vertical and horizontal branches we analyse, in particular in the cases of
severe fading. This is encouraging because these are the cases when chan-
nel diversity is most needed. Thanks to a compact configuration, polarised
antennas should thus be of value to small wireless sensor nodes.

1.4.2 Communication under processing costs and uncertainty

By including processing energy – both at the transmitter and the receiver
sides – and optimising for a small total communication energy, we find the im-
portant general trend that the optimal choice approximately equalises trans-
mission and processing energy costs. To the extent balancing is achieved
depends of course on the initial conditions, but there are still some general
implications. First, we see that present radios often have insufficient output
power (relative to their processing power consumption) to make use of the
optimal transmission choices. For example, many sensor radios forces the
node to resort to multi-hopping at a stage where a single-hop would be more
energy efficient. On the other hand, the use of very powerful amplifiers is
discouraged by the amplifier efficiency degradation with back off, and we
include this effect in our calculations. Radio design should thus include, in
addition to the concerns regarding absolute energy consumption, considera-
tions of the maximum achievable transmission-to-total-processing ratio ρ′max.
Second, the balancing effect accentuates the need to include processing en-
ergies: the processing energy cost will be non-negligible no matter how we
turn.

Chapter 4. Here we study the energy efficiency of transmit power con-
trol, error correcting codes and adaptive modulation. First, by the use of
the Shannon limit we study some general, but idealised, properties of rate
optimisation. We note the interesting result that the optimised spectral effi-
ciency will be inversely proportional to the transmission-to-total-processing
ratio ρ′. This signifies the impact of processing costs: only when the trans-
mission costs are entirely dominant can the usual wide-band limit for energy
consumption be used adequately.

The feedback required to perform (truncated) channel inversion penalises
the use of power control, but not significantly as long as the fading is slow
enough to avoid excessive feedback rates. Most, but not all, existing sensor
radios will benefit from the use of power control, but there is significant
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uncertainty regarding the amount of saved energy.
Error correcting codes reduce the transmit energy at the price of in-

creased transmission time. The processing cost this introduces outweighs
some of the coding benefits, and we study this trade-off for a class of adap-
tive block codes. Many existing radios will not benefit from error correcting
codes.

Adaptive quadrature amplitude modulation (QAM) can be used to in-
crease the transmit rate at short distances and thereby reduce the processing
energy. However, we find that the processing intensive hardware required
outweighs the possible benefits, a conclusion reached in a similar context by
Shih et al. (2001).

Chapter 5 provides an assessment of receiver polarisation diversity from
an energy perspective. Simple and processing-cheap schemes such as switched
(switch-and-stay, threshold) diversity provide sizeable energy savings in se-
vere fading, but is more sensitive to the degree of fading than more processing
intensive schemes like maximum ratio combining. Almost all existing nodes
can afford to pay a little extra processing for the robustness provided by
switched diversity, while maximum ratio combining becomes attractive at
larger transmission-to-total-processing ratios ρ′. In any case, we conclude
that receiver polarisation diversity is certainly an attractive diversity tech-
nique as it achieves energy efficient transmissions in a simple manner.

Chapter 6 presents results for multi-hop communication. With the excep-
tion of applications where significant packet aggregation and/or data fusion
is possible along a multi-hop route, we find that multi-hop within the trans-
mission range of present sensor radios is wasteful of energy. One main reason
is the drastically increased processing cost associated with the involvement
of one or more relay nodes. Consequently, to avoid multi-hopping when it
is wasteful, sensor radios should be designed to have more output power,
relative to the processing power consumption, than they presently have. For
the time being, it is advisable to hop as far as possible.

Due to the increased number of hops, the scheme also suffers from “inverse
diversity”, that is an increased risk of errors in the end-to-end communica-
tion. Multi-hop is therefore sensitive to fading, and especially in Rayleigh
fading the performance is decreased markedly. Hence, the use of receiver
polarisation diversity improves the situation considerably by improving the
fading resilience. Furthermore, the multi-hop approach is sensitive to the
position of the relay node, and the result is that the possible gains become
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significantly more uncertain in sparse networks than in dense networks.
By joint optimisation of the number of hops and the error correcting code

rate, we find that they balance their contributions as the number of hops
increase. The result is that it suffices with reasonably high code rates in
most cases, typically above 2/3. Also, the transmission-to-total-processing
ratio ρ′ stabilises at levels that, while out of reach for existing nodes, would
be attainable with modest increases in transmit power.

Chapter 7 considers the use of cooperative MIMO, that is single-antenna
nodes forming arrays and performing joint transmissions (here with the use of
space-time block codes). Like multi-hopping, cooperative MIMO introduces
too much additional processing energy to be useful for existing sensor radios.
The gains over a single-input single-output (SISO) transmission rely to a
great extent on the poor performance of SISO in severe fading. For this
reason the gains are sensitive to the degree of fading, and small deviations
from the Rayleigh case have large impact, and the energy gains become
uncertain even at large transmission-to-processing ratios ρ′.

If we complement the SISO transmissions with receiver polarisation di-
versity to reduce the channel variations, and on top of that channel inversion
through transmit power control, the relative gains from the use of coopera-
tive MIMO are further reduced.

In the comparison between multi-hop and cooperative MIMO for long
range transmissions, the results show great variability with the degree of
fading and the propagation loss behaviour.

Summary. An overall picture now emerges, with somewhat fuzzy edges
due to the present uncertainties, of when to apply different communication
techniques. We show this overview in Figure 1.2. At the horizontal midpoint,
ρ′ = 1, transmission and processing energies are equal: to the right the
former dominates, and to the left the latter dominates. Note that energy
efficient multi-hop and cooperative MIMO is outside the transmission range
of all the shown nodes, while techniques which can be introduced at lower
processing costs are feasible alternatives.

1.4.3 Measurement capacity – a network resource metric

Chapter 8 outlines the need for another network wide metric than the
commonly used concept of lifetime, which is typically defined as the time
until the first node, or a certain percentage of the nodes, runs out of en-
ergy. We propose a novel metric, the network measurement capacity, which
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Figure 1.2: Approximate transmission-to-total-processing regions of energy
efficiency for the considered techniques (upper bars), and the attainable
transmission-to-total-processing ratios ρ′max for existing radios (lower bars).
The dark grey areas show indicate uncertain regions where no firm conclu-
sion can be drawn, while light gray areas indicate more reliable energy
savings.

is based on the number of different sequences of measurements/detections
that the network can perform successfully, for a given distribution of energy.
This leads to automatic incorporation of both energy efficiency and load bal-
ancing, two concepts that are widely recognised as desirable but have not
been combined other than in ad hoc ways previously.

We make use of the measurement capacity metric to study optimal rout-
ing in a many-to-one network. It turns out that the sensing energy has a
fundamental impact on the choice of routing pattern, and multi-hopping is
very unfavourable if sensing consumes less energy than the communication
processing.

By including shadowing of communication paths within the network, we
find that the possibility to circumvent shadowing objects provides a much
better motivation for using multi-hop than the gain from shorter hops that
is most commonly put forward.

A network’s measurement capacity can be increased by optimising the
multi-hop routing patterns, but the gains are relatively small. They are
somewhat larger in shadowed environments than in non-shadowed environ-
ments, but they are still modest and the single-hop approach performs sur-
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prisingly well. A significant increase in measurement capacity is however
achieved by introducing local sinks which form a second layer in the net-
work. Such heterogeneous-hierarchic structures are strongly supported by
this result, and the results from Chapters 4 to 7 give guidelines for how large
the sub-networks in such tiered structures should be.

1.5 Outlook toward future research

The more we know about the channel characteristics, the more accurately
we can predict which communication technique that will be most energy
efficient. Considering the relative lack of sensor network specific measure-
ments, we plan to carry out extensive channel measurement campaigns. With
enough data from different environments, proper model selection can show
us which models to use. Incorporation of relevant channel models in the
development of higher layer protocols for routing and scheduling is crucial
if these are to be efficient and robust under the large channel variations we
can expect sensor networks to encounter.

The concept of measurement capacity will be studied and developed fur-
ther. Application of the metric to specific problems, first and foremost to
scheduling for target search and detection, will enable us to test it, generalise
it and hopefully also to include the full aspect of the uncertainties present.
Generalisations towards the related concept of sensing capacity (Aeron et al.,
2007, Rachlin et al., 2005) offers an interesting avenue of research. The
measurement capacity can also be useful in deployment planning, and the
deployment of tiered networks under monetary constraints (Mhatre et al.,
2005) and uncertainty deserve, in our view, more attention. The issues here
involve robustness to uncertainties such as the ones we have explored in this
thesis, but also regarding possible higher-level node failures.



Chapter 2
Models, Methods and Assumptions

THIS chapter comprises definitions of, and assumptions regarding, our
basic models for the sensor nodes and their energy consumption, and

also the important channel models used for calculating the wireless transmis-
sion costs. Importantly, we define the transmission-to-processing ratio which
will accompany us throughout the thesis as our primary trade-off variable.
We provide a fairly detailed account of probability theory as logic and how
we make use of its recognition of probabilities as carriers of incomplete in-
formation to include our prior knowledge quantitatively in the subsequent
chapters. Our assigned probability distributions for channel and deployment
parameters are closing this chapter.

2.1 Energy models for networks and nodes

We conceptually divide each sensor node into three functional constituents:
the sensor itself, the (data) processor and the radio; see Figure 2.1. They
are all supported by the onboard battery and must share its energy. Now,
let

PS ≡ Sensor power consumption,

PDP ≡ Data Processor power consumption,

PR ≡ Radio power consumption.

(2.1)

Since our focus is on energy the power consumptions P are not interesting
per se, it is rather how they translate into an energy consumption through

17
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Figure 2.1: Illustration of the energy consumption in a wireless sensor node.
The sensor(s), the data processor and the radio are the three major con-
ceptual building blocks whose energy consumption should be minimised to
maximise the node’s lifetime.

the active time required to perform a certain task.1 We will therefore, for a
given “activity”, study the energy consumed per “unit”. Here, “activity” can
refer to a wireless transfer of data, the reading of a value from the sensor
with subsequent processing, or a combination thereof. The “unit” could
be a data information bit, a measurement value, an in-network inference, or
whatever is appropriate for the application. Typically we will consider energy
per transmitted bit and/or energy per delivered measurement value when
assessing different communication and sensing schemes. Let the per-unit
energy consumptions, for sensing, data processing and radio communication
respectively, be denoted

ES ≡ PSTS,

EDP ≡ PDPTDP,

ER ≡ PRTR,

(2.2)

where T(·) denotes the active time for each part respectively.

1Of course, power limitations exist and one can not ignore the issue completely. For
instance, the battery has a peak power limitation which sets limits for the sensor node
activities. However, we will assume that such power limitations are well beyond the
operating points we consider.
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Assumption 2.1

Unless otherwise stated, all sensor nodes are identical, and the central sink
has unlimited energy resources.

Remark 2.1 Our sensor energy model with three blocks is indeed somewhat
simplistic. Some nodes can scale their processing power (Wentzloff et al.,
2004), the radio usually have several modes of operation (sleep, wake-up,
transmit, receive, etc.) and the three blocks can in reality not operate com-
pletely independent of each other. In spite of the model’s simplicity it will
serve its purpose well in our general trade-off analysis and provide energy-
optimisation insights. Our main objective is to capture the first-order trade-
off effects.

2.2 Communication under processing costs

A wireless transmission of data consumes energy at both the transmitter
and the receiver. Only a part of this total energy is actually radiated from
the antenna, while there is an overhead part consumed by the nodes’ active
circuitry which process data and signals.

2.2.1 Trade-off model for the sensor node radio

Our goal is not a complete and detailed sensor radio energy model with every
component explicitly included because such a model would most likely be too
implementation specific. What we need is a reasonably generic energy model
which captures the prominent trade-off between processing and transmission
energies in the choice of transmission scheme. Toward this end, we begin with
a simple basic model of the total radio energy consumption Etot expended
during transmission and reception of a bit (or other relevant entity). Let

Etot = ERP + ET, (2.3)

where

ERP ≡ total Radio Processing energy consumption,

ET ≡ Transmission energy consumption.
(2.4)

Hence, ERP represents the energy consumption for all radio processing that
does not change with the radiated output power while ET represents the
transmission costs which do change with output power (but not necessarily
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in a linear manner). Processing energy is expended at both the transmitter
and the receiver and we write

ERP ≡ EPt + EPr (2.5)

where Pt and Pr denote transmit processing and receive processing respec-
tively.

If a change in transmission technique can reduce the transmission power
significantly, for example by employment of error correction coding, at a
small expansion of the transmission time one might save in total energy
consumption. The key issue is the relation between the radio processing
energy ERP and the transmission energy ET. Because the transmission energy
ET generally increases with the inter node distance d it is common to present
a threshold distance d̃ at which two techniques T1 and T2 under consideration
perform equally well,

Etot,T1(d̃) = Etot,T2(d̃). (2.6)

The threshold distance is appealing in that one can immediately relate it to
network deployments and required sensor node densities. However, as Ex-
ample 2.1 below shows, the threshold distance is a slightly deceptive metric
as it may conceal the influence of several parameters.

Example 2.1 The Deceptive Threshold Transmission Distance

Cui et al. (2004) study the energy efficiency of multiple input multiple
output (MIMO) techniques and present a threshold transmission distance
d̃ above which MIMO requires less total energy per bit than a single-input
single-output (SISO) transmission. They find that a 2× 1 MIMO system
will consume less energy than a SISO system for distances above d̃ ≈ 60 m.

At first, when Mr. A sees their result he thinks that 60 m is a long
distance and that MIMO is not suited for his sensor network. But then
he realises that the result is based on a free-space propagation assumption
where the propagation loss is proportional to d2, and he recalculates the
threshold to suit the environment he is considering. By the use of a fourth
order model in which the propagation loss is proportional to d4, he arrives
at d̃new = (d̃)2/4 =

√
60 ≈ 7.7 m. This puts everything in a new light and

Mr. A is happy to choose MIMO for his sensor network application.
Mrs. B on the other hand, she plans a very sparse sensor network

and for her 60 m is a relatively short distance considering that the net-
work will cover about a square kilometre of open fields. But then, upon
closer inspection, she realises that the threshold d̃ is based on a link safety



Chapter 2. Models, Methods and Assumptions 21

margin Ml = 10000 (40 dB), that is a margin intended to guard against
un-modelled phenomena and thereby ensure that the received power is
large enough. Since her application environment is very predictable she
is sure that a margin Ml,new = 2 (3 dB) is enough, and she recalculates
the threshold. To her disappointment, the distance at which cooperative
MIMO becomes superior has now grown to d̃new =

√
Mld̃ > 4200 m.

Therefore, SISO will be more energy efficient than cooperative MIMO in
Mrs. B’s application.

In fact, by the use of a single threshold distance one can “prove” almost
anything by reallocating part of the transmission energy from a distance de-
pendent propagation loss to any other parameter in the transmission model.
Examples include link margins, noise levels, antenna gains and power am-
plifier efficiencies. We will instead focus on the trade-off between processing
and transmission energies directly by using the transmission-to-processing
ratio in place of distance.

The transmission-to-processing ratio

We define the transmitter’s transmission-to-processing ratio as

ρ ≡ ET

EPt
, (2.7)

where ET and EPt are the transmission and processing energies, respectively.
One might object that since the whole processing cost will matter, not only
transmit processing, it would be more appropriate to use the transmission-
to-total-processing ratio

ρ′ ≡ ET

ERP

=
ET

EPt + EPr

=
ρ

1 + EPr/EPt
.

(2.8)

We agree, but as we can not always express our results in terms of this
total ratio ρ′, for instance in Chapter 6, we sometimes choose to use ρ in
(2.7) for pragmatic reasons. Moreover, by defining the receiver-to-transmitter
processing ratio

α ≡ EPr

EPt
(2.9)
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we obtain from (2.8)
ρ′ =

ρ

1 + α
. (2.10)

For any given receiver-to-transmitter processing ratio α one can thus easily
find ρ′ from ρ.

Assumption 2.2

To simplify interpretation of our numerical results, we will use the reasonable
receiver-to-transmitter processing ratio α = 1 whenever we must choose a
value. Thereby, one can always find the total transmission-to-total-processing
ρ′ ratio from the transmission-to-processing ratio ρ numerically as ρ′ = ρ/2.

Observe that the transmission-to-processing ratio varies with the trans-
mitter output power and is not a constant of the transmitter architecture.
However, we assume that a sensor node radio has a maximum achievable
transmission-to-processing ratio denoted

ρmax ≡ max

( ET

EPt

)
. (2.11)

Typically, EPt is assumed constant and the maximum ρmax corresponds to
the use of the transmitter’s maximum transmit power level.

The threshold ratio at which two schemes T1 and T1 are energy-wise equal
in performance is denoted

ρ̃Tref ≡ threshold transmission-to-processing ratio

for transmission scheme Tref .
(2.12)

Here Tref is the technique used as a reference in the comparison, and generally
ρ̃T1 �= ρ̃T2 . Note that a threshold transmission-to-processing ratio ρ̃ has the
appealing feature of being unaffected by transmit energy reallocations such
as the one given in Example 2.1. It is only affected by reallocations between
processing energy EPt and transmission energy ET – exactly the trade-off we
are interested in.2

Remark 2.2 Let us stress that absolute values are important – it is in the
end the actual energy consumption that counts – but in the present analy-
sis we gain insights regarding the transmission-processing trade-off that are
independent of several system parameters. These general insights can later
be translated into absolute values, such as a threshold distance, for a specific
sensor node type.

2Independent changes in EPt and ET also change the transmission-to-processing ratio ρ.
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Now that we have the trade-off metric ρ′, let us model its constituents
ERP and ET, beginning with the former.

2.2.2 Node radio hardware models

The radio processing energy ERP of (2.5) is consumed by oscillators, mixers,
filters, etc. The energy consumption is highly implementation specific and
ranges from nJ/bit to μJ/bit depending on the radio architecture, see Wu
et al. (2007) and Shih et al. (2001). Considering all the possible architec-
tures and design choices, it is far outside the scope of this work to devise
and use a detailed and generic hardware energy model. Apart from the
maximum transmission-to-processing ratio ρmax in (2.11) and the receiver-
to-transmitter processing ratio α in (2.9), we include only a model of the
transmitter’s power amplifier efficiency.

Efficiency degradation of power amplifiers

The hardware characteristic which we find most important in the present
trade-off analysis is the degradation in power amplifier efficiency,

η ≡ Erad

ET
, (2.13)

with decreasing radiated power Erad (amplifier back-off). The reason for
us to include it is the considerable impact it has on the achievable energy
savings from transmission efficient techniques. Mikami et al. (2007) argue
that a reasonable amplifier model is

ET = ET,max

( Erad

Erad,max

)1/g

(2.14)

where

g ≡ power amplifier degradation exponent,

Erad ≡ radiated energy per bit.
(2.15)

According to Mikami et al. (2007), the degradation exponent is restricted to
2 ≤ g ≤ 2.8, with a typical value g = 2.6. Rewriting (2.14) we find that the
power dependent amplifier efficiency in (2.13) can be expressed

η = ηmax

( Erad

Erad,max

)1−1/g

, (2.16)
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where ηmax is the maximum efficiency attained for maximum output power:
η = ηmax when Erad = Erad,max (or when g = 1). The degradation model
(2.14) signifies that a reduction in radiated energy is not translated propor-
tionally to the transmission related energy ET because amplifiers are typically
designed to operate at maximum output power, and therefore work less ef-
ficiently when backed-off to lower levels. A result quantitatively similar to
(2.14) was obtained by Haenggi (2003) who found an empirical model from a
study of amplifier data sheets. In Figure 2.2 we show the power amplifier ef-
ficiency according to (2.16) and the proposal of Haenggi (2003, Definition 2).
As one can see, the two models are in fairly good agreement. Henceforth,
we will use (2.14) under the following assumption:

Assumption 2.3

The power amplifier degradation exponent in the Mikami model (2.14)

g = 2, (2.17)

unless otherwise stated.

Characteristics of present sensor node radios

Here we give examples of radio modules and designs suited for wireless sensor
networks. It is hard to find precise quantifications of ρmax for the radios, but
we make rough estimates from data sheets and publications where enough
data has been found.

Chee (2006) Discusses four transmitter types designed for energy efficiency,
namely direct conversion, direct modulation, injection lock, and an ac-
tive antenna solution. The active antenna transceiver is the most ef-
ficient and we find that its maximum transmission-to-processing ratio
ρmax = 2.7 when tested in isolation. This applies however not to a fully
functional node, and when the whole solution is tested the maximum
ratio is only ρmax ≈ 0.4

Wu et al. (2007) Low power 17 GHz front end consuming 16 mW in trans-
mit mode at its maximum radiated output power of 0.75 mW. As-
suming a total efficiency of 10 percent, the maximum transmission-to-
processing ratio becomes ρmax ≈ 7.5/8.5 ≈ 0.9. The receiver consumes
17.5 mW, meaning that the receiver-to-transmitter processing ratio
α ≈ 17.5/8.5 ≈ 2.1. Consequently, ρ′max ≈ 7.5/26 ≈ 0.3.
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Figure 2.2: The transmitter’s efficiency η is reduced when the amplifier is
backed off from its maximum output. The g-curves correspond to the model
due to Mikami et al. (2007). The horizontal axis displays the radiated-to-
maximum ratio Erad/Erad,max. Energy gains from backing off from Erad,max

to Erad are diminished by this efficiency degradation.

Atmel AT86RF230 Low power 2.4 GHz transceiver (ZigBee) with ρmax ≈
0.74. It has a receiver-to-transmitter ratio α ≈ 1.6, and recalculating
the equivalent ρmax corresponding to α = 1 we find that ρmax ≈ 0.56.
Note that it is not a full sensor node, only the radio.

Chipcon CC1000 Transceiver for 434 MHz and 868 MHz. Our estimate
of the maximum ratios are ρmax ≈ 3.85 and ρmax ≈ 1.95 for the two
frequencies. Receiver-to-transmitter ratios are α = 1.4 and α = 1.12
respectively, and recalculating for α = 1 yields the equivalent ρmax ≈
3.2 and ρmax ≈ 1.84. Only radio, no other functionalities.

Filiol et al. (2001) Bluetooth receiver with maximum ratio ρmax ≈ 1. The
receiver-to-transmitter ratio is α = 2.73 and the equivalent transmission-
to-processing ratio corresponding to α = 1 is thus ρmax = 0.54.

Wentzloff (2007) Ultra wideband transceivers with ρmax = 0.24.

From an energy consumption perspective one may ask whether it is desirable
to have a large ρmax or a small ρmax. Maybe it does not matter? First, we
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observe that it is easy to achieve almost any ρmax we please by the use of a
large (or small) power amplifier, so the numbers above should not be seen as
representing current limitations in ρmax. They serve as a reference for typical
values and indicate that values slightly below one are most common, but
that transceivers with larger ρmax exist. Second, we note that ρ says nothing
about the energy-efficiency since it is the ratio of to energy consumptions:
a specific ρ can pertain to any energy per bit. The maximum transmission-
to-processing ratio is therefore not a direct measure of transceiver quality.
However, as our analysis will show, there may be strong reasons not to design
radios with very small or very large ρmax:

• Sensor node radios with ρmax < 0.1 will always operate with processing
energies dominating transmission energies. They can thus not benefit
from transmission techniques that are transmission-efficient; the opti-
mum transmission-processing trade-off can be infeasible for this type
of node. For instance, these sensor node can be forced to use multi-
hop transmissions when a longer single hop would have consumed less
energy (see Chapter 6).

• Sensor node radios with ρmax > 10 are flexible (assuming that output
power is adjustable) but pay an energy penalty caused by the power
amplifier back-off degradation described by (2.14). When operating
significantly below its maximum output transmit power, the sensor
node radio dissipates an unnecessarily large amount of energy through
its power amplifier.

We return to this discussion in Chapter 9 when we know more about the
transmission-processing compromise.

Having set down our very basic radio processing model, let us turn to
the more intricate modelling of the transmission energy consumption ET.

2.2.3 Transmission energy and channel models

The transmission cost ET is the energy consumed from the onboard battery
by the transmitter’s power amplifier. It is strongly influenced by the wireless
channel between the nodes, the environment in which the sensor network is
deployed. Considering energies per bit, we assume, in accordance with most
standard textbooks on wireless communication, the validity of the following
wireless link model (Proakis, 2001, Sec. 5.5.2).
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Assumption 2.4

To achieve a target signal-to-noise ratio per bit γ at the receiver’s symbol
detector, with a margin Ml, the transmitter antenna must radiate an average
energy per bit Erad fulfilling

Erad = Ml ·
Nf

Gant
· x−1N0γ, (2.18)

where

Ml ≡link safety margin,

Nf ≡receiver noise figure,

Gant ≡antenna gain relative to isotropic radiation,

x ≡channel gain,

N0 ≡noise power spectral density at the receiver,

γ ≡received signal-to-noise ratio per bit, Erec/N0,

where Erec is the received energy per bit.

(2.19)

In (2.18), the first factor Ml is a design parameter intended to cover unpre-
dicted variations in the other parameters; a safety link margin. The second
factor Nf/Gant is directly dependent on the hardware design. The third fac-
tor x−1N0γ is determined by the transmission environment – the channel
gain between transmitter and receiver and the ambient noise level at the
receiver – and the signal quality γ required for the modulation and detection
scheme to attain the performance requirements.

Remark 2.3 The signal-to-noise ratio per bit γ is the ratio between the
received energy per bit and the noise power spectral density,

γ =
Erec

N0
. (2.20)

Both these quantities represents energy and are given in Joules (J). Hence,
γ is a ratio of energies, as opposed to the signal-to-noise ratio γP which is
the ratio between received signal and noise powers. When the suffix per bit
is used we are always referring to energy, not power.

Observe that Ml, Nf , Gant and N0 in (2.18) are important radio design
parameters, but they will have no impact in our analysis since they are
common to all transmission schemes we examine. Thanks to our use of the
transmission-to-processing ratio ρ in (2.7), these factors will cancel out. The
channel gain x is far more influential in our analysis.
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The linear multi-path radio channel model

The radiated energy per bit Erad in (2.18), required to fulfill the performance
goals at the receiver, is strongly dependent on the properties of the wireless
channel embodied in the channel power gain x. So, what can be said about
the channel and how should it be modelled? The physical models for cal-
culation of radio wave propagation are readily available through Maxwell’s
equations. In principle, we could calculate the field strengths at the receiving
antenna as a function of the transmitter and the environment by specifying
all boundary conditions. The unsurmountable practical problem facing us
is of course that the boundary conditions are both extremely complex and
unknown to us. We must therefore resort to much simpler models that still
capture the channel characteristics needed to design a communication sys-
tem; models including macroscopic constraints – which we are able to find
in practice – rather than the microscopic constraints – which would be too
complex to use even if they were obtainable.

In Appendix 2.B we describe the linear filter multi-path model in some
detail and motivate our modelling choices and assumptions more closely by
reference to the literature. The reader unfamiliar with radio channel mod-
elling may consult the appendix at this point; otherwise it used mostly for
reference.3 In short, we will make use of the following macroscopic assump-
tions regarding the wireless channels.

Assumption 2.5

The multi-path channels between the wireless sensor nodes are frequency non-
selective (flat) with a single resolvable multi-path component modelled by a
single complex-valued filter tap.

With respect to the linear single-tap model we define

ς ≡ the channel’s amplitude gain,

x ≡ the channel’s power gain.
(2.21)

Regarding the gains ς and x of the channel we consider three types of vari-
ations.

• Fading through constructive/destructive interference between path con-
tributions.

3For comprehensive and detailed accounts of radio channel modelling we refer the
reader to the works by Parsons (2001) and Vaughan and Andersen (2003). The books
by Goldsmith (2005) and Proakis (2001) also treat channel modelling, but with stronger
focus on the channel’s impact on communication performance.
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• Shadowing by objects.

• Propagation loss due to power dissipation over distance.

The combined effect is modelled as common power gain

x = xlxsxf , (2.22)

where xl denotes propagation loss, xs denotes shadowing and xf denotes
fading. The latter two are normalised to unit average gains xs = 1 and
xf = 1.

Assumption 2.6

The (small-scale) fading is well characterised by the Nakagami-m fading fig-
ure m. We use the corresponding gamma distribution

p(xf |m,xf , I) = Gam(xf |m,xf)

≡ mm

Γ(m)xm
f

xm−1e
−m

xf
xf

(2.23)

for xf , with the normalised average xf = 1.

Over ranges where the propagation loss and shadowing effects xl and xs

are constant, all variations are due to fading and we can use p(x|m,x, I) =
Gam(x|m,x), where x is the average channel power gain. The two main
reasons for the Nakagami-m assumption are the following:

1. The common Rayleigh fading model has proven insufficient for many
environments, see Appendix 2.B.

2. The degree of fading has significant impact on transmission energy, see
Appendix 2.C. The Nakagami-m model facilitates assessment of these
effects, while a Rayleigh model precludes it.

Observe that the Nakagami-m model includes the Rayleigh model, m = 1,
and the static channel, m → ∞, as special cases.

Assumption 2.7

The (large scale) shadowing effects are well characterised by their logarithmic
standard deviation σdB. We use a log-normal assignment

p(xs|xs, σdB, I) = LogN(xs|xs, σdB)

=
1

xs
· μ√

2πσdB

e
− 1

2σ2
dB

(
μ ln(xs/xs)−

σ2
dB
2μ

)2
(2.24)

for xs, with the normalised average xs = 1 and μ ≡ 10/ ln(10).



30 2.2. Communication under processing costs

Over ranges with constant propagation loss, the average channel gain is
denoted x to signify an average over both fading and shadowing. Then we can
use p(x|x, σdB, I) = LogN(xs|x, σdB) for the shadowing induced variations.

Assumption 2.8

The overall average power gain xl = x of the single-tap channel follows a
power law attenuation

x ∝ (d/d0)
−κ (2.25)

over distance d, where κ is the propagation loss exponent and d0 is a reference
distance above which the model is presumed valid.

Finally let us introduce the following definition regarding the rate of
change in the channel gain with respect to the transmission packet duration.

Definition 2.1 Let TP be the duration of a packet in seconds, and let TIP

be the (average) time between the beginning of each packet; the inter-arrival
duration. The channel coherence time is TC.

1. If TC → ∞ the channel is static

2. If TIP 
 TC < ∞ the channel is quasi-static

3. If TP < TC < TIP the channel is slow (block fading)

4. If TC < TP the channel is fast

Communication performance in fading channels

Multi-path channels can have far reaching consequences for the communica-
tion performance and the design of communication systems. In Appendix 2.C
we review some results relating performance – typically bit error or outage
probability – to transmit power, which in turn is important for our analy-
sis of energy efficiency. The reader who is unfamiliar with these matters in
general, and Nakagami-m fading in particular, should consult the appendix.

1. The signal-to-noise ratio per bit γ is proportional to the channel gain
x, see (2.18), as long as transmit power or interference levels do not
change faster than the channel. Hence, the propagation loss, shadowing
and fading models (2.23)-(2.25) can be applied to γ directly.

2. Regardless of which communication performance criterion one consid-
ers – bit error probability, outage probability or channel capacity –
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it is crucially dependent on the received signal-to-noise ratio per bit
γ. Hence the performance requirements in terms of the signal-to-noise
ratio per bit γ translate into radiated energies Erad.

3. Quite generally, the probability of error – probability of bit error or
outage – will depend on the degree of Nakagami fading as

Perror ∝ γ−m, (2.26)

where m is the fading figure and γ is the average signal-to-noise ra-
tio per bit. The energy-wise impact of variations in m can be large,
especially close to the Rayleigh case m = 1.

2.2.4 Summary of radio models

Our radio communication trade-off model is based on the fixed transmit and
receive processing energies EPt and EPr respectively, and the variable trans-
mission energy ET. The only hardware specific model we use is the Mikami
model (2.14) for the efficiency degradation of backed-off power amplifiers.

Our wireless channel model includes propagation loss, log-normal shad-
owing and frequency flat Nakagami-m fading. Communication performance
is very sensitive to the parameter values in these models, and in order to
quantify the present uncertainty we now turn to the topic of probability
theory as logic.

2.3 Probability theory, uncertainty and decisions

Neither in science or in everyday life can we hope to reach decisions by de-
ductive reasoning more than occasionally; the comfort of absolute certainty
is denied to us most of the time. We are forced to reason from incomplete
knowledge, uncertain as we are regarding the true state of matters. Without
thinking about it, we carry out qualitative plausible reasoning every day. For
example, the appearance of clouds makes rain more plausible and we choose
to bring the umbrella. Good ability to process incomplete information effi-
ciently has probably been favoured in the evolution of animals and humans
– individuals lacking this ability would definitely have a disadvantage in the
competition – and we are quite capable of making everyday decisions under
uncertainty. But when we face complex problems in science or other pro-
fessional fields our intuitive abilities are often insufficient. Formal deductive
logic helps us to reach the correct conclusion even in immensely complicated
chains of reasoning, and a quantitative theory of plausible reasoning would
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be of great use. Fortunately, the mathematical framework of deductive logic,
within which certain conclusions can be drawn from a set of premises, can
be extended to probability theory, the logic of plausible reasoning.

In the present context of energy-efficiency in wireless sensor networks,
there are several model parameters whose values are unknown and we should
not ignore the present uncertainty when analysing our problems. Sensor
networks must generally be designed under considerable uncertainty as to the
actual operating conditions they will encounter, and the design requirements
demand more than a qualitative plausibility analysis. We will find that
probability in the general interpretation presented here provides us with the
tools and principles we need, tools that are missing in conventional statistics.
The principle of maximum entropy helps us to incorporate our incomplete
knowledge in a defensible way by assignment of the most non-committal
probability distribution consistent with our information. This use of prior
probabilities is denounced in the conventional teachings but is crucial for us
here. Moreover, the present theory tells us how to make optimal decisions
based on the information we actually include, and also the uncertainty, not
over an infinite set of imagined experiments, but for this particular case.

Our exposition of probability theory is to a large extent a condensa-
tion of the work of E. T. Jaynes, collected in his posthumously published
book (Jaynes, 2003). Interested readers are strongly encouraged to read this
book. Because there are many misconceptions regarding the interpretation
of probabilities given here, we describe it at some length. The reader who is
well acquainted with the theory before us can fast-forward to Section 2.4 on
page 48.

2.3.1 Extending deductive logic

We will use the notation of Boolean algebra to handle propositions A,B,C, etc.
and the deductive logic applicable to them.

AB The logical product is true if and only if

both A and B are true.

A+B The logical sum is true if at least one of

A and B is true.

A The negation is true if and only if A is

false.

A ⇒ B Logical implication denotes the truth of

A+B, or, equivalently that AB is false.

(2.27)
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In order to be able to any draw deductive conclusions we must first assume
the truth of some basic premise, for instance the truth of A ⇒ B ≡ “if A is
true, then B is true”. Under this assumption4, the information that B is false
lets us deductively conclude that A is also false. However, deductive logic is
silent on the issue if we instead learn that B is true; no deductive conclusion
can then be drawn. But this is the most common situation. For instance, the
medical doctor might know that disease A implies symptom B, but learning
that B is true does not generally permit any deductive conclusion regarding
A, because of alternative causes for B. On the other hand, it is possible
to perform inductive reasoning based on the truth of B. It is precisely this
type of plausible reasoning we wish to perform quantitatively by extending
deductive logic.

The desiderata for quantitative plausible reasoning

The starting point for the extension of deductive logic to quantitative plausi-
ble reasoning is the statement of three fundamental desiderata of the theory
to be developed.

I Degrees of plausibility are represented by real numbers

II Qualitative correspondence with common sense

III Consistency

a) If a conclusion can be reasoned out in more than one way, then
every possible way must lead to the same result

b) All relevant evidence is always taken into account. No information
is arbitrarily ignored.

c) Equivalent states of knowledge are always represented by equiv-
alent plausibility assignments. That is, if in two problems the
reasoner’s state of knowledge is the same (except perhaps for la-
belling of the propositions), then he/she must assign the same
plausibilities in both.

A quantitative theory that fulfills the desiderata must have wide applicability
due to the generality of the desiderata.5 As it turns out, the only quantitative

4Care should be taken not to interpret logical implications as cause-effect relationships;
A ⇒ B does not mean that A is the physical cause of B.

5Observe that we have not mentioned “relative frequencies”, “repetitive experiments”,
“Venn diagrams” or “betting” one single time.
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theory that meets our desiderata is the well-known calculus of probability
theory (Jaynes, 2003, Ch. 2).

The rules of probability theory

Let us by
P (A|BI) (2.28)

denote the probability – that is the quantitative plausibility – that proposi-
tion A is true, given that proposition B and the basic premise I are true.
Further, to conform with the standard for probability density functions for
continuous variables, let us exercise a slight abuse of the Boolean notation
and by

p(x|BI)|dx| (2.29)

denote the probability that the value of the continuous parameter x is within
the range [x, x+dx); hence p(x|BI) is the probability density function for x’s
value.6 By the use of an upper case P we are thus referring to probabilities
of discrete propositions – or hypotheses – while we use a lower case p when
referring to a probability density functions for continuous parameters – or
parameterised hypotheses.

Remark 2.4 We have explicitly included the truth of the premise I, our
background knowledge, in the notation P (A|BI). We include it to stress that
all probabilities are conditional on some background information I. The
assumption that the premise is true is present also in deductive reasoning,
and no deductive conclusion would be reached without it.

We have stated the desiderata, essentially, in the words of Jaynes (2003),
but it was R. T. Cox who provided the seminal derivation of probability
theory from an essentially equivalent formulation (Cox, 1946). The refined
analysis expounded by Jaynes shows that the product rule and the sum
rule of probability theory constitute the only consistent rules for plausible
reasoning.7 As a consequence, anyone who does not adhere to the product

6If propositions happen to regard the value of a parameter X, we can define a param-
eterised range of propositions

Hx ≡ “the value of X is within [x, x + Δx]” (2.30)

and use the proper notation P (Hx|BI). This notation could be defined with any desired
accuracy Δx, but we will for simplicity use the more common p(x|BI).

7To be precise, the scale is not fixed by the desiderata and any transformation P ′ = P w,
0 < w < ∞ fulfills the desiderata. However, it is the P , not the P ′, that are determined
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rule

P (AB|I) = P (B|AI)P (A|I) = P (A|BI)P (B|I),
p(a|b, I) = p(b|a, I)p(a|I) = p(a|b, I)p(b|I), (2.31)

and the sum rule

P (A|BI) + P (A|BI) = 1,∫
p(a|b, I)da = 1,

(2.32)

will inevitably violate the desiderata (I)− (III) in some way.8

From the basic rules one can derive the well-known theorem of Bayes,

P (H|d, I) = P (H|I)p(d|HI)

p(d|I) , (2.33)

were have used H for a hypothesis under consideration, and d for data used
in the inference. Our knowledge is updated from the background I to the
background and knowledge of the data d , and the probability is updated
according to Bayes’ theorem: it quantifies the learning from data. As a
matter of convention one usually calls P (H|I) the prior for H, p(d|HI) the
likelihood for H and P (H|DI) the posterior for H. Additionally, we can
from the sum rule derive the useful procedure of marginalisation,

P (H|d, I) =

M∑
m=1

P (H|Bm, d, I)P (Bm|d, I),

p(a|D, I) =

∫
p(a|b,D, I)p(b|D, I)db,

(2.34)

by which we can handle so-called nuisance parameters Bm and b; proposi-
tions/parameters that have influence on our inference but are not of primary
interest.

At this point one might ask “So, we have rediscovered the rules of proba-
bility theory by extending deductive logic. Why the fuss?” Our short answer
is:

by the data and the background knowledge, see (Jaynes, 2003, Sec. 2.4). The scale could
also be fixed by introducing an extra desiderata on additivity: If three mutually exclusive
propositions Am are equally likely, the compound proposition A1 + A2 should be twice as
plausible as A3.

8Note that when including continuous parameters, we separate them by commas to
avoid confusion; p(a, b|I) instead of p(ab|I) since the latter could be perceived as referring
to the algebraic product ab.
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The Cox-Jaynes formulation shows that probability theory as
logic applies to all problems of quantitative reasoning from in-
complete knowledge. Probability theory is not restricted to rel-
ative frequencies in repeated experiments or “physical probabil-
ities”. Neither are we required to arbitrarily classify entities as
“random” or “deterministic”, with allowance to apply probability
theory to “random” entities only. Instead, the extended-logic for-
mulation puts the focus where it should be in inference problems,
on how to optimally process our incomplete information. With
their strong logical foundation, the product and sum rules are ap-
plicable in a far more general context than the relative-frequency,
random-deterministic, interpretation allows.

Presently, we need to handle nuisance parameters and draw conclusion
based on “non-data” priors for them. Conventional methods lacks principles
to cope with our situation, principles readily available once we accept prob-
ability theory as logic. Let us therefore proceed with the concept of entropy
and later the principle of maximum entropy for assigning priors.

2.3.2 Uncertainty and entropy

Once we accept that a probability is a valid quantitative description of the
plausibility that the available information warrants us to assign for Am, it
stands clear that a probability distribution P (Am|I) also must represent,
quantitatively, our uncertainty regarding the truth of Am. At first it might
seem unnecessary to quantify our uncertainty with an explicit measure, but
we will see later that a quantitative uncertainty measure can be useful both in
the process of assigning priors and when defining the concept of measurement
capacity.

Shannon’s desiderata

C. E. Shannon contemplated the issue of uncertainty in the context of com-
munication theory, and his attempt to find a quantitative measure was, in-
deed, successful (Shannon, 1948a). He started by considering M mutually
exclusive and exhaustive propositions Am; let us use the shorthand notation
Pm = P (Am|I) for convenience. In his search for an uncertainty measure
H(P1, P2, . . . , PM ) Shannon invoked the following desiderata:

1. Continuity. H(P1, P2, . . . , PM ) is continuous in the Pm.
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2. Common-sense correspondence. When all Am are equally probable,
Pm = 1/M , the uncertainty H(1/M, 1/M, . . . , 1/M) is monotonically
increasing with the number of possible outcomes M .

3. Additivity. If proposition Am can be broken down into mutually exclu-
sive sub-propositions Am,1 and Am,2, with Pm,1 + Pm,2 = Pm, then

H(P1, . . . , Pm,1, Pm,2, . . . , PM ) = H(P1, . . . , Pm, . . . , PM )

+ PmH(Pm,1/Pm, Pm,2/Pm).
(2.35)

The resulting uncertainty should be the sum of the original uncertainty
and the additional, weighted with probability Pm.

4. Consistency. If there are several ways to find H(P1, P2, . . . , PM ), all
should lead to the same result.

Shannon found that the uncertainty measure meeting his desiderata must
have the form

H(P1, P2, . . . , PM ) = −K

M∑
m=1

Pm log(Pm), (2.36)

where K > 0 is an arbitrary constant and the logarithm is taken to any base.
For simplicity, we set K = 1. Note that

• The uncertainty H(P1, P2, . . . , PM ) ≥ 0

• For a given M , the uncertainty is maximal when all possibilities are
equal, Pm = 1/M , and the uncertainty is then Hmax = log(M)

• The uncertainty is zero if and only if one possibility must be true,
Pm = 1, and all other false

The function H(P1, P2, . . . , Pm) ≥ 0 is called the entropy of the probability
distribution P (Am|I).

Entropy and multiplicities

Although the Shannon desiderata seem reasonable and readily acceptable,
do we really need to introduce them on top of our desiderata of plausible
reasoning in order to assess uncertainty numerically? A more direct ap-
proach suggested by Graham Wallis – which also turn out to be very useful
when we in Chapter 8 develop our notion of sensor network capacity as the
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number of different event distributions the network can respond to – is the
following (Jaynes, 2003, Sec. 11.4). Let each possibility Am correspond to an
imaginary box and the let content of box m be nm indistinguishable quanta
of probability that sum to P (Am|I); the distribution of quanta corresponds
to our present probability distribution. Assume that there are N =

∑
nm

equal-sized quanta in total, where nm/N = P (Am|I); we can choose N large
enough to get any accuracy. Now, in how many ways could we rearrange
the quanta while maintaining the distribution? The answer is given by the
multinomial coefficient

W =
N !

n1!n2! . . . nM !
, (2.37)

see Sivia (1996) for more details. Hence, W is the number of different mi-
crostates – the number of rearrangements – that correspond to the given
macrostate – the distribution nm/N = P (Am|I). By taking the logarithm
of (2.37) and applying the Stirling approximation,

ln(n!) = n ln(n)− n+ ln(
√
2πn) +O(n−1), (2.38)

we find after some straightforward manipulations that

1

N
ln(W ) = −

M∑
m=1

nm

N
ln

(nm

N

)
+O

(
ln(

√
N)

N

)
. (2.39)

The quantisation can be made arbitrarily fine by letting N → ∞ and nm →
∞ in a way that maintains nm/N = P (Am|I). In the limit

1

N
log(W )→ −

M∑
m=1

Pm log (Pm) , (2.40)

and the influence of the Pm on the size of W is through the entropy (2.36)
as derived by Shannon. The uncertainty is thus in the present formulation
related to the number of microstates that correspond to the macroscopic
constraint; for instance, when there is absolute certainty all quanta are in
one box and there is only one allowed microstate, W = 1. This view will
be useful later when we discuss entropy maximisation. Also, it clarifies
the connection between information theory and thermodynamics, where the
constraints can be, for example, pressure, volume and temperature while the
microstates refer to the allowed positions and velocities of the molecules in
a gas (Jaynes, 1957a,b).
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Continuous variables

Taking the limiting case of a discrete problem formulation – for which the
Shannon entropy (2.36) quantifies our uncertainty – in order to approach a
continuous problem formulation we must be careful to specify exactly how
the limit is approached. Jaynes (2003, p. 375) shows that the entropy ex-
pression approaches

H ′(p(x|I)) → −
∫

p(x|I) log
(

p(x|I)
Mq(x)

)
dx (2.41)

when the number of hypotheses M → ∞. Subtracting off the infinite log(M)
term he arrives at

H(p(x|I)) = −
∫

p(x|I) log
(

p(x|I)
q(x)

)
dx, (2.42)

where q(x) is a function of the limiting process that ensures that the con-
tinuous entropy is invariant under a change of variables. Note that, due
the subtraction of the log(M) term, H(p(x|I)) ≤ 0 unlike the always non-
negative entropy H(P1, P2, . . . , PM ) for uniform discrete hypothesis spaces.

Where do we stand?

At our disposal is now the quantitative tool for inference – probability theory
as logic – and the quantitative description of our uncertainty – the entropy.
But how do we get started in a real problem? The theory concerns so far
only the manipulation of probabilities and the numerical assessment of un-
certainty, but how do we assign the probabilities in the first place? We need
tools for this in order to take model parameter uncertainties into account.

2.3.3 Assigning prior probabilities

According to the present theory in which a probability distribution repre-
sents incomplete information, the initial assignment of probabilities amounts
to a “translation” of the specified prior information into a specific probabil-
ity distribution. To ensure objectivity we invoke the interface Desiderata
(IIIb) and (IIIc). Below we describe invariance (groups) and the princi-
ple of maximum entropy as the translational tools for certain types of prior
information.
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Ignorance priors and invariance arguments

In an information based quantitative theory of inference, the representation
of complete ignorance is the natural point of departure – just like zero is a
natural starting point for adding numbers. This limiting form of uninfor-
mative probability assignment can be achieved by exploiting any invariance
that is implicitly defined by lack of constraints in the background information
(Jaynes, 2003, Ch. 12).

Discrete hypothesis space. Consider a problem with M mutually ex-
clusive and exhaustive possibilities Am. The labels Am are of course arbi-
trary, and the problem could be restated by some permutation (relabelling)
Am → A′n of the propositions without changing the nature of the problem.
Numbering the problems 1 and 2, the permutation n = Perm(m) gives

P (Am|I)1 = P (A′n|I)2,
{

n = Perm(m)
m = 1, 2, . . . ,M

. (2.43)

Now, if the background knowledge I is indifferent between the propositions
Am – whatever it says about Ai it also says about Aj – the two problems are
entirely equivalent. Desideratum (IIIc), which requires equal plausibility
assignments from equal information, can then be restated as

P (Am|I)1 = P (A′m|I)2. (2.44)

Combining (2.43) and (2.44) we obtain

P (Am|I)1 = P (An|I)1,
{

n = Perm(m)
m = 1, 2, . . . ,M

. (2.45)

If invariance under relabelling would not hold, we would always be at the
mercy of a lucky choice of labels in the beginning of each inference problem;
Desideratum (IIIc) protects us against this. Since the propositions are mu-
tually exclusive and exhaustive, the only quantitative choice that does not
violate the sum rule (2.32) is

P (Am|I) = 1

M
. (2.46)

The assignment principle manifested in (2.46) rests on the information be-
ing indifferent between propositions, and is consequently referred to as the
principle of indifference. An important observation is that the probability
assignment in (2.46) is precisely the one that maximises the uncertainty given
by the Shannon entropy in (2.36); if this was not the case some inconsistency
would have been revealed.
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Remark 2.5 Care must be taken in application of the principle of indiffer-
ence so that it is applied to a hypothesis space where the indifference really
applies. Consider for example the transformation of problem 1 above, not
through permutation of the Am but through construction of a composite hy-
pothesis B1 = A1 +A2. Then we can no longer assert indifference. We give
a more concrete example below, see Example 2.3.

Continuous hypothesis space. In the discrete case, the uniform assign-
ment (2.46) always holds under indifferent background knowledge. Most of
us would be prepared to make this assignment without the line of reasoning
above, but in the case of a continuous hypothesis space the problem is more
difficult and the uniform assignment is not always the most uninformative
one. To see this, consider the entropy (2.42) of a continuous variable x. It
can be shown by the method of Lagrange multipliers that the probability dis-
tribution corresponding to maximum uncertainty H(p(x|I)) is p(x|I) ∝ q(x).
If the continuous problem was found by a limiting process from a discrete
problem q(x) would have arisen in that process, but otherwise we must find
it from an invariance property of the continuous problem. Jaynes (2003,
Ch. 12) approaches the problem of finding q(x) by the use of transformation
groups and invariance. We will not cover the theory in detail but give instead
an illustrative example.

Example 2.2 The Uniform Prior and Jeffreys’ Prior

Consider a signal x, −∞ < x < ∞, with unknown mean μ and variance
σ2. Reasonably, if we are completely ignorant about the mean value a shift
according to

μ′ = μ+ a (2.47)

can not make the problem appear different. Invariance under translation
(2.47) requires

p(μ|I)|dμ| = p(μ′|I)|dμ′|
= p(μ+ a|I)|dμ|. (2.48)

The only solution to (2.48) is the uniform probability distribution

p(μ|I) ∝ const. (2.49)

It seems that a location parameter like μ, for which we want translational
invariance, should be assigned a uniform ignorance prior.
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Consider now the variance σ2. Certainly, translational invariance is
not suitable – we can not translate the variance to negative values without
absurd consequences – but scale invariance could be motivated by the fact
the unit (nm or km, pW or MW , etc.) of the measurement should not
matter if we are completely ignorant. Therefore, consider

σ′ = bσ (2.50)

and the invariance requirement

p(σ|I)|dσ| = p(σ′|I)|dσ′|
= bp(bσ|I)|dσ|.

(2.51)

In this case, the only solution is the so-called Jeffreys’ prior

p(σ|I) ∝ 1

σ
. (2.52)

Noteworthy is that Jeffreys’ prior for σ corresponds to a uniform prior for
log(σ), that is a uniform prior over the scale of the problem.

We have here illustrated the use of invariance to find the underlying ignorance
measure to give an idea of how it can help us get started with an inference
problem. More details are given by Jaynes (2003, Ch. 12), who, for instance,
resolve Bertrand’s famous paradox by the use of invariance arguments.

The principle of maximum entropy (MaxEnt)

As we noted above, the uninformative prior is a natural starting point, but
we will not be completely ignorant in all real problems. There should be a
way to incorporate cogent background information available at the outset;
information that puts constraints on the probability assignment. We noted
previously, see (2.46), that the most uninformative discrete probability distri-
bution, the uniform, corresponded exactly to the maximum, unconstrained,
Shannon entropy. Jaynes perception of this connection led him to formulate
the principle of maximum entropy, MaxEnt for short, here in our choice of
verbiage

Assign the probability distribution which has the maximum en-
tropy permitted by the constraints set by the background infor-
mation.



Chapter 2. Models, Methods and Assumptions 43

The key idea is to include the imposed constraints, but nothing else, through
the choice of the maximally non-committal probability assignment. No un-
warranted assumptions are to be implicitly encoded into our assignment; no
additional restrictions than the ones in I should affect it. This achieved
by entropy maximisation as it ensures that the maximum possible range of
“microstates” are included in our assignment (Jaynes, 2003).

The general solution. We here give the general solution to the entropy
maximisation problem in a continuous setting; the discrete case is readily
found by replacing integrals with sums. Let the constraints be expected
values ∫

fk(x)p(x|I)dx = Fk, k = 1, 2, . . . ,K. (2.53)

The probability density function p(x|I) which maximises the entropy

H(p(x|I)) = −
∫

p(x|I) log
(

p(x|I)
q(x)

)
dx, (2.54)

subject to the constraints (2.53) is

p(x|I) = q(x)

Z(λ1, λ1, . . . , λK)
e−λ1f1(x)−λ2f2(x)−···−λKfK(x), (2.55)

where the partition function

Z(λ1, λ1, . . . , λK) =

∫
q(x)e−λ1f1(x)−λ2f2(x)−···−λKfK(x)dx, (2.56)

and the Lagrange multipliers are found from

Fk = − ∂

∂λk
log (Z(λ1, λ1, . . . , λK)) , k = 1, 2, . . . ,K. (2.57)

Remark 2.6 The constraints need not be expected values, but the informa-
tion we include must be testable; we must be able to conclude whether a
proposed distribution meets the constraint or not. For instance, the con-
straint a < 5 can be formulated as

∫ 5
−∞ p(a|I)da = 1 and we can readily

check if a distribution violates this constraint or not.
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Example 2.3 Poisson Distribution and Sensor Node Deployment

Assume that sensor nodes are deployed with a density of μ nodes/m2.
What is the probability p(n|μ, a, I) to find exactly n nodes within an ar-
bitrary region of area a? The average number of nodes within an area a
is μa, and incorporating this into the maximum entropy formalism as a
constraint (2.53) is straightforward,

∞∑
n=0

np(n|μ, a, I) = μa = F1. (2.58)

Trickier is the question about the ignorance measure q(n). If we without
further thought would apply the principle of indifference directly to the
nonnegative range of n, q(n) would be uniform and the resulting Max-
Ent distribution would according to (2.55) be an exponential distribution,
p(n|μ, a, I) ∝ exp(−n/(μa)). Clearly something is wrong when the most
probable value of n is zero, regardless of how densely we deploy nodes and
how large area we consider.

Consider instead the division of the area into M  n conceptual, equal-
sized, boxes and the placement of a particular sensor node. Now, the
background information is indifferent to which of the M arbitrarily labelled
boxes one specific node will be placed. It is here, to the hypothesis space
of the position of each node, that the principle of indifference is applicable
in this particular problem. We can transform this space by considering
in how many ways n indistinguishable sensor nodes can be distributed
between M boxes. This reasoning, also expounded by Sivia (1996), yields
the ignorance measure

q(n) =
Mn

n!
, (2.59)

the number of possible placements divided by number of sequences consist-
ing of n nodes. Application of the general MaxEnt solution then results in
the Poisson distribution

p(n|μ, a, I) =
(μa)ne−μa

n!
. (2.60)

Fortunately, the number M cancels out in the calculation.
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Averages and true models. To us, the principle of maximum entropy
appears perfectly sound, and is also a constructive approach. However, one
may argue, reasonably, that our background information never includes the
true average value F of a quantity f(x) and that we therefore never can
rightfully motivate the MaxEnt approach. Indeed, if we have a measure-
ment sequence {xn}N

n=1 and choose to use only the sample average x in our
probability assignment, we are clearly violating desideratum (IIIb). On the
other hand, if we are only given x the case for MaxEnt improves, but prob-
lems still remain: Should we really fix the mean value based on a small
sample average? These objections have spurred criticisms and led some to
reject the use of MaxEnt. Our view is that the status of constraints in Max-
Ent is the same as the status of the (physical) models we incorporate to
conduct inference; in both cases good judgement is required, but we would
not get far if we denied ourselves the possibility to use anything but the “true
model”. For instance, we know that the Newtonian laws of motion are false,
but still we use them successfully because they are good enough for everyday
velocities. Whether we like it or not, our inferences – deductive or inductive
– must be conditioned on the truth of some premise I. This holds also in the
present context where we, for example, know that all our radio propagation
models in Section 2.2.3 are merely approximations to the laws of physics.

Example 2.4 Macroscopic Constraints and Fading Distributions

Consider the sampled received narrow-band low-pass signal

sn = an + jbn

= ςnejθn ,
(2.61)

where an and bn are the real and imaginary parts respectively – the in-phase
I and quadrature Q components – and ςn and θn are the corresponding
polar coordinates; the envelope and the phase. Sample time is denoted
n. Let us use translational invariance for an and bn and therefore use
q(an) = q(bn) = constant as our ignorance measures9 in (2.54). Assume
now that, in addition to our background knowledge that the signal is a
narrow-band complex-valued signal, we also know that the mean power in
each component is σ2. We invoke this constraint in the maximum entropy

9One could here enter a long discussion about this choice, but for brevity we refer the
interested reader to Jaynes (2003, Ch. 12).
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procedure, ∫∫
a2

np(an, bn|I)dbndan = F1a = σ2,∫∫
b2
np(an, bn|I)dandbn = F1b = σ2.

(2.62)

From (2.55) we can by the use of f1a(an) = a2
n and f1b(bn) = b2

n conclude
that the maximum entropy assignment is a two-dimensional, circularly
symmetric, Gaussian probability distribution. By performing a change of
variables from Cartesian (an, bn) to polar (ςn, θn) we obtain a Rayleigh dis-
tribution for the envelope ςn and a uniform distribution for the phase θn.
Hence, the macroscopic constraints on mean power corresponds to assign-
ment of a Rayleigh fading distribution. For the received power, xn = ς2

n we
obtain an exponential distribution p(xn|I), corresponding to a constraint

E(x2
n|I) =

∫
x2

np(xn|I)dxn = F1. (2.63)

Now, let us assume that we in a certain environment, for some reason,
also know the average order of magnitude10

E(ln(xn)|I) =
∫
ln(xn)p(xn|I)dxn = F2, (2.64)

the expected scale of the power. Together with (2.63) we can now use
(2.56) to calculate the partition function Z, and then use (2.57) to solve
for the Lagrangian multipliers λk. With the aid of Mathematica (Wol-
fram Research Inc., 2007) we find that

p(xn|F1, F2, I) =
mm

Γ(m)Fm
1

xm−1
n e

−mxn
F1 , (2.65)

where the m parameter is found as the solution to

ln(m)−Ψ(m) = ln(F1)− F2. (2.66)

Recognising in (2.65) the gamma distribution (2.23) in our Nakagami-m
channel assumption, we see that this assumption corresponds to macro-
scopic constraints on E(xn|I) and E(ln(xn)|I).

10The author has struggled some time to see whether this constraint can be well moti-
vated, but has not reach a convincing argument.
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2.3.4 Optimal decision making under uncertainty

The rules of probability theory prescribes how probabilities should be manip-
ulated and concerns only the inferential part of the problem. The posterior
P (Am|d, I), with possible nuisance parameters removed through marginal-
isation, summarises our knowledge about Am, but how we should choose
our course of action based on this knowledge is not solely determined by
the posterior. We need to include, and value, the consequences of acting
on correct and erroneous decisions. While the theory of probability rests on
logical analysis from a set of nearly inescapable desiderata, decision theory
naturally includes value judgements.

Hypothesis testing and parameter estimation

To make a decision Ad, and act as if it were correct, we must introduce
value judgements that quantify the loss incurred for each combination of
decision Ad and true state of nature Am. This value judgement is contained
in a so-called loss function L(Am, Ad). Combining the posterior and the loss
function we can make the decision which minimises the expected loss,

Â = argmin
Ad

M∑
m=1

P (Am|D, I)L(Am, Ad). (2.67)

The estimation of a continuous parameter x is equivalently achieved by solv-
ing

x̂ = argmin
xd

∫
L(x, xd)p(x|d, I)dx. (2.68)

Observe the quite fundamental difference between the present approach, in
which all decisions are based on the posterior probability distribution that
summarises our knowledge, and the statistical approach, in which we must
come up with an estimator without aid from underlying principles. The
most common estimates are interpretable as the result of an application of
a certain loss function. Let exemplify in the one dimensional case.

Quadratic-error loss. If we want to minimise the expected squared error
L(x, xd) = (x − xd)

2, the optimum estimate is the mean value of the
posterior for x,

x̂2 =

∫
xp(x|d, I)dx. (2.69)

Absolute-error loss. Considering instead the absolute value of the error
L(x, xd) = |x−xd|, we obtain the median x̂1 as our optimum estimate.
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It is found by solving

x̂1∫
−∞

p(x|d, I)dx =
1

2
. (2.70)

Zero-one loss. When the size of the error is irrelevant – we are only satisfied
with the true value of x – we can define a zero-one loss

L(x, xd) =

{
0 , xd ≡ x
1 , xd �= x

. (2.71)

Minimisation of the expected loss then yields the maximum a posteriori
estimate; the x corresponding to the highest peak in the posterior
p(x|d, I). Note that if our prior p(x|I) for x is uniform, the maximum a
posteriori estimate will coincide with the common maximum likelihood
estimate.

Minimax. If we are extremely conservative we may consider only the worst
possible error and choose x̂ so as to minimise that error. The only
property of our posterior having influence is then its support; that is
to say the set of all propositions that are not ruled out as impossible.

In this thesis we will mainly use the median together with percentiles xa,
defined by

a =

xa∫
−∞

p(x|I)dx, (2.72)

when we present our energy efficiency results. Sometimes we complement
with the mean value, but because our distributions are non-symmetric we
will not display the commonly used standard deviations: sometimes it is
outside the range of possible values and can thereby mislead.

2.4 Quantification of modelling uncertainty

In the present work the primary source of uncertainty is the wireless chan-
nel; there are extremely large variations in the channel gain over different
environments, positions and times. We have in Section 2.2.3 described mod-
els for these variations11, and the assumptions that went into the models,

11Details can be found in Appendix 2.B.
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but our knowledge regarding their parameter values is incomplete. To avoid
worst/best case design choices we should try to quantify the present uncer-
tainties and take them into consideration. Unless we consider the uncertain-
ties, we run the risk of making design choices that give excellent performance
in a specific scenario but cause large energy losses in the majority of all pos-
sible scenarios.

When considering parameter uncertainty in our channel gain model and
the sub-models for propagation loss, shadowing and fading – for details, see
Appendix 2.B – a conceptual problem is that we know that the models are
approximate and that the parameters therefore lack a really good physical
interpretation. For this reason, an assignment of probabilities that obey the
interface Desideratum (IIIb) becomes hard to find because reasoning from
first principles is not possible. For example, what is really the physical origin
of the propagation loss exponent κ in (2.100), and how should we reason to
arrive at a reasonable prior for this empirical parameter? It is sometimes
difficult to include much more than empirical averages, and we will use the
principle of maximum entropy as our vehicle for this. We strive to include
the prior information in the most sensible way, but we are pragmatic when
needed and leave it to reader to make her own judgement about our choices.
Inference problems are always open ended and we do not claim that we
have the right answer, merely a sensible answer given by the information we
include in the calculation.

2.4.1 Node position and network density

The positions of the sensor nodes have impact not only on the sensing per-
formance, but also on the choice of transmission scheme. In particular when
considering the energy-efficiency of multi-hop communication one must con-
sider the relative position of the relay node: an offset from the optimal
location incurs an energy-efficiency degradation. We here assign probability
distributions for two scenarios, namely “random” sensor node deployment
and non-perfect deployment with target positions.

Unknown or unstructured sensor node deployment

Assume that the position of the nodes are unknown, possibly because nodes
were deployed in an uncontrolled fashion, for instance by an air-drop. In any
case, we know only the (average) node density λ m−2 in the network. The
result given in Example 2.3 is then applicable. For a given density λ m−2,
the probability for finding exactly k nodes in a region of area A is by the
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principle of maximum entropy

P (k|A,λ, I) =
(λA)ke−λA

k!
, (2.73)

the classical Poisson distribution. The expected number of nodes within an
area A is E(k|A,λ, I) = λA.

Theorem 2.1 Assume that, for a two-dimensional network deployment, we
have assigned the Poisson distribution (2.73) based on knowledge of the node
density λ m−2. Starting from an arbitrary position in the network, more
than d m from the network boundary, the distance d to the closest node has
a maximum-entropy probability density function

p(d|λ, I) = 2λπde−λπd2
. (2.74)

This Rayleigh distribution has mean value (4λ)−1/2 and second moment (πλ)−1.

Corollary 2.1 Let d and ad, a > 1, be the semi-minor and semi-major
axes of an elliptic area within the wireless sensor network. The shortest
semi-minor axis d of such an ellipse that encloses at least one sensor node
has a maximum-entropy probability distribution

p(d|a, λ, I) = 2aλπde−aλπd2
. (2.75)

This Rayleigh distribution has mean value (4aλ)−1/2 and second moment
(aπλ)−1.

See Appendix 2.A for proofs of Theorem 2.1 and Corollary 2.1.

Sensor deployment with placement error

Let us assume, in contrast to uncontrolled deployments, that each node n
instead has a target position which the placement procedure attempts to
attain. We consider an idealised two-dimensional network described in the
Cartesian coordinates (x, y), where the target position for node n is (xn, yn).

Theorem 2.2 Assume that node placement is carried out without systematic
error μx = μy = 0 m, but with a root-mean-square deviation σx = σy = σ m.
The distance d =

√
(x − xn)2 + (y − yn)2 from the target position has a

maximum-entropy probability distribution

p(d|σ, μ = 0, I) =
d

σ2
e−

d2

2σ2 . (2.76)
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Proof: Entropy maximisation in the (x, y) plane yields a two-dimensional
Gaussian probability distribution, (Jaynes, 2003). A subsequent change of
variables from Cartesian coordinates (x, y) to polar coordinates (d, θ) results
in (2.76).

We see from Theorem 2.1 and Theorem 2.2 that a Rayleigh distribution for
d is applicable for both “random” and structured deployments.

2.4.2 Propagation loss exponent

Without a cogent physical explanation of the origin of the propagation loss
exponent κ it is hard to set down an entirely convincing line of reasoning re-
garding how to assign our prior p(κ|I). Furthermore, it is also problematic to
include numerical estimates κ̂ from the literature. To process them properly
via Bayes’ theorem we need a model relating measurements and estimates
– including the accuracy of the used instruments, the estimator used, the
treatment of nuisance parameters and the length of the measurements – so
that we can assign the likelihood p(κ̂|κ, I). This much information is rarely
given in the published papers on measurements. For these reasons we take
a pragmatic approach and exploit the MaxEnt tool to condense the most
important aspects of the reported estimates into a probability assignment.

To begin with, we know for certain that the exponent κ in the power-
law propagation loss model, see Assumption 2.8, must be greater than zero,
κ > 1; otherwise we would have an amplifying channel. Empirically we
furthermore know that exponents κ > 6 are extremely rare, while exponents
in the range [2, 4] are common, see Table 2.2 in Appendix 2.B. Our prior
p(κ|I) must therefore approach zero when κ → 0 and when κ > 6; to achieve
this we note that, according to the general MaxEnt solution given in (2.53)-
(2.57), maximum-entropy average-constraints on

f1(κ) = x,

f2(κ) = ln(x)
(2.77)

results in a distribution of the form κ−λ2 exp (−λ1κ), see also Example 2.4.
This gamma type of distribution can force probabilities to zero for small and
large κ. The sample averages based on the estimates in Table 2.2 on page 62,

F1 =
1

N

N∑
n=1

κ̂n = 3.405,

F2 =
1

N

N∑
n=1

ln(κ̂n) = 1.185,

(2.78)
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Figure 2.3: Maximum entropy prior for the propagation loss exponent based
average constraints on κ and ln(κ) computed from the estimates collected
in Table 2.2 in Appendix 2.B. Almost 90 percent of the probability lies in
the range [2, 5].

results in the MaxEnt assignment12

p(κ|F1, F2, I) = 82.31 · 10−3κ11.62e−3.707κ. (2.79)

We plot this prior in Figure 2.3 together with percentiles.

Remark 2.7 In the present approach, the choice of constraints is arbitrary:
Why not also constrain the averages of κ2 and exp(κ) while we are at it? The
used set of estimates is small and inclusion of to many constraints would lead
to over-fitting. The choice of constraints has to be done judicially, just like
the choice of propagation loss model. While we admit that our approach is
not perfect, we stress that the alternative mostly used in the literature is to
simply ignore the uncertainty and pick one single exponent κ and proceed
as if it was true. The possible consequences are evident upon comparing
Example 1.1 and Example 1.3.

12We have not specified the ignorance measure q(κ) in (2.55), but it turns out that the
constraints in (2.77) have the peculiar property of making the choice between the two
most common ignorance measures, q(κ) = const. and q(κ) ∝ 1/κ, pointless. Regardless
of whether we deem translational or scale invariance most appropriate, the result is still
the gamma distribution in (2.79).
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The probability density function in Figure 2.3 is a reasonable description
of the present author’s general knowledge about κ, but if we would have
considered a more specific type of environment p(κ|F1, F2, I) would be nar-
rower. For example, in a forest we are not likely encountering κ < 2 since
this implies some kind of wave-guide effect (typically encountered in corri-
dors). As always, the inference problem is open-ended and our prior (2.79)
is not the one and only prior.

2.4.3 Amount of large-scale shadowing

By taking the same approach here as for the propagation loss exponent, we
make use of Table 2.3 in Appendix 2.B and calculate the averages

F1 =
1

N

N∑
n=1

σ̂dB,n = 4.48,

F2 =
1

N

N∑
n=1

ln(σ̂dB,n) = 1.28,

(2.80)

where σdB is the decibel standard deviation in the log-normal shadowing
model, see (2.101) in Appendix 2.B. The resulting prior for σdB is

p(σdB|F1, F2, I) = 0.180σ1.40
dB e−0.534σdB , (2.81)

and we plot this prior in Figure 2.4.

2.4.4 Degree of small-scale fading

We saw in Example 2.4 that the Nakagami-m envelope fading distribution is
the maximum entropy solution under the constraints of normalised channel
power gain x = E(x|I) = 1, and an average scale of the gain E(ln(x)|I) =
Fnak. The gamma distribution for x is

p(x|x, Fnak, I) =
mm

Γ(m)
xm−1e−mx, (2.82)

where m is the Nakagami-m fading figure. The role that the fading distri-
bution has in our framework limits the fading figure to m ≥ 1; that is, we
consider Rayleigh fading the worst case.13 In the entropy maximisation the

13If the constraint Fnak is not included, then the result is the exponential distribution,
that is to say Rayleigh fading. Since this represents the worst case of several reflections
of approximately equal magnitude (see Appendix 2.B), a fading distribution worse than
this implies that some shadowing occurs. We have however modelled shadowing explicitly
with the log-normal model and wish to keep their roles separated.
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Figure 2.4: Probability assignment for σdB, the decibel standard deviation
in the log-normal shadowing model, based on Table 2.3 in Appendix 2.B.

fading figure is determined from

Fnak = Ψ(m)− ln(m), (2.83)

see Example 2.4, where Ψ denotes the polygamma function. Now, it is hard
to reason about the physical meaning of m, but the situation is slightly
better for Fnak which essentially constrains the scale of the variations due to
fading. If the scale of the variations is completely unknown, then a uniform
prior

p(Fnak|I) = const. (2.84)

would reflect our ignorance. A change of variables according to (2.83) leads
to

p(m|I) =
{ 1

γEuler

(
Ψ(1,m)− 1

m

)
, m ≥ 1

0 , m < 1
(2.85)

where Ψ(1,m) is the first derivative of the polygamma function and γEuler

is Euler’s constant. The prior in (2.85) is shown in Figure 2.5. We observe
that p(m|I) ∝ 1/m2 is a fairly accurate approximation.

We do not include additional constraints, and this is mainly because we
do not have enough quantitative information to motivate the same procedure
as for the propagation loss exponent κ and the shadowing variance σdB.

Remark 2.8 It might seem that our prior (2.85) excludes the possibility
of a static channel, m → ∞, and puts all the weight on severely fading
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Figure 2.5: Probability assignment for the Nakagami fading figure m (black
solid line). Also shown is a 1/m2 prior (dashed line) which closely approx-
imates the assignment in (2.85).

channels. However, for practical purposes all channels for which m > 10 can
be considered static since the communication performance is then quite close
to the ideal static channel, see Appendix 2.C. In that sense, our prior says
that there is a chance of about 10 percent to encounter a static channel.
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Appendix 2.A Proof of Theorem 2.1

Proof: Consider an in-network region R of area A, and let k be the number
of nodes within R. The probability that it will contain at least one node is by the
sum rule of probability theory, and the Poisson assignment in (2.73),

P (“Area A encloses at least one node” |λ, I) = 1− P (k = 0|A, λ, I)

= 1− e−λA. (2.86)

We can thus write, with a slight abuse of notation,

P (A1|λ, I) = 1− e−λA1 , (2.87)

where A1 is the “parameterised proposition” that an area A1 is not empty. By
differentiation we obtain the probability density function

p(A1|λ, I) = λe−λA1 . (2.88)

Put differently: the area A1 for which the region R becomes non-empty is assigned
an exponential probability distribution with mean λ−1.

Specialising the region to a circle of radius r, we carry out a change of variable
according to A1 = πr2, |dA1| = |2πrdr|, in (2.88) and arrive at

p(r|λ, I) = 2πλre−λπr2

, (2.89)

which is (2.74). Likewise, considering an ellipse of area A1 = πar2, the change of
variable leads to (2.75).

Appendix 2.B Linear-filter channel model

By modelling the low-pass channel between the transmitter and receiver as consist-
ing of different paths, each with a corresponding delay τn(t) and gain an(t), we can
readily express the channel’s properties as the (time-variant) impulse response of a
linear filter

h(τ, t) =

N(t)∑
n=1

an(t)e
−j2πfcτn(t)δ (τ − τn(t)) . (2.90)

Here, an(t) is the amplitude gain of the nth path at time t, and the delay corre-
sponding to this path is denoted τn(t) while N(t) is the number of paths between
transmitter and receiver. The carrier frequency is denoted fc and we use δ(·) for
the Dirac delta function. This type of channel is naturally called a multi-path chan-
nel, and is essentially a plane wave approximation of the full solution of Maxwell’s
equations.
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Appendix 2.B.1 Delay spread and frequency-selectivity

The length of the channel’s impulse response is commonly termed delay spread,
Th(t) ≡ max(τn(t)). The delay spread is practically always non-zero and the chan-
nel will cause inter symbol interference. The interesting question is whether this
inter symbol interference is negligible or not. When Th(t) is considerably smaller
than the symbol duration T there will not be any significant interference between
the transmitted symbols at the receiving antenna. We can then simplify the model
to a single-tap filter that models all path contributions collectively.14 We thus
obtain

h0(τ, t) ≡ a0(t)δ (τ − τ0) , (2.91)

where

a0(t) ≡

⎛⎝N(t)∑
n=1

an(t)e
−j2πfcτn(t)

⎞⎠ . (2.92)

Over the bandwidth of the transmitted signal the single-tap channel will have a
constant (flat) frequency response and is therefore called frequency non-selective,
or frequency flat. So, what delay spreads are to be expected for the data gathering
sensor networks we are considering?

Frequency Non-Selective Sensor Network Channels Sensor nodes will
typically use low power radios and communicate over relatively short distances.
Nodes placed indoors or close on the ground outdoors are more likely to encounter
small delay spreads than large (a large delay spread requires, in addition to the
direct path, open paths via far away objects). A short survey of the literature
on channel measurements reveals that root-mean-square (RMS) delay spreads15 in
relevant scenarios typically range from 10 ns to 100 ns, with means around 40 ns.
Worst case root-mean-square delays of around 300 ns are reported but seem very

14Most easily this is illustrated by an infinite symbol duration for which all delay spreads
are small. The transmitted low-pass signal in this extreme case is sT(t) = A exp(−jφ),
where φ is the carrier phase and A is the carrier amplitude. The received low-pass signal
sR(t) is by the use of (2.90)

sR(t) =

N(t)∑
n=1

an(t)e−j2πfcτn(t)sT(t − τn(t)) =

⎛⎝N(t)∑
n=1

an(t)e−j2πfcτn(t)

⎞⎠Ae−jφ.

The receiver can not resolve the different paths – it sees only a pure carrier – and the
channel model is effectively reduced to the single (complex-valued) tap within the brackets.

15The maximum delay spread Th(t) max(τn(t)) is quite impractical when characterising
a given type of transmission environment. By assuming that different paths have uncorre-
lated behaviour and that the average behaviour of the channel does not depend on t one
can define the multi-path intensity profile (or power delay profile) q(τ ) ≡ E

(
|h(τ, t)|2

)
,

where E(·) denotes expectation (average). The profile q(τ ) gives the average power gain
corresponding to a certain delay. It is common to use the root-mean-square (RMS) delay



58 2.B. Linear-filter channel model

rare. In Table 2.1 we summarise the references we have consulted. We have deliber-
ately disregarded from non-representative scenarios with respect to wireless sensor
networks (for instance long-distance rooftop-to-rooftop transmissions). As a conse-
quence, our list is by no means exhaustive and one can surely find measurements
showing more extreme values.

We adopt a reasonably conservative definition of “flat” by considering a channel
with TRMS < 10T as flat (Goldsmith, 2005, Sec. 3.3.1). Our conclusion based
on Table 2.1 is then that symbol durations down to T = 10 · 40 ns = 400 ns
(corresponding to a symbol rate of 2.5 MS/s) will in most cases lead to negligible
inter symbol interference, while symbol durations down to 1 μs (symbol rate 1 MS/s)
almost surely will be on the safe side. As we consider 1 MS/s a high rate in the
sensor network context, we will henceforth use Assumption 2.5 on page 28, here
restated,

The multi-path channels between the wireless sensor nodes are fre-
quency non-selective (flat)with a single resolvable multi-path compo-
nent modelled by a single complex-valued filter tap.16

Resting on this assumption and (2.91) we make the following definitions for the
frequency non-selective channel.

Definition 2.2 Given a single-tap model h0(t, τ) = a0(t)δ(τ − τ0) the channel’s
(time varying) envelope gain is

r(t) ≡ |a0(t)|, (2.93)

and its power gain is

x(t) ≡ |a0(t)|2 = r2(t). (2.94)

spread without reference to the shape of q(τ ):

TRMS ≡

⎛⎝ ∞∫
0

(
τ − Th

)2
q̆(τ )dτ

⎞⎠1/2

,

where q̆(τ ) ≡ q(τ )/
∫

q(τ )dτ is the normalised intensity profile, and T h is the average
delay spread.

16It is of course conceivable that networks must communicate under frequency-selective
circumstances and our analysis in this part of the thesis would in that case have to be
modified. We do not believe that such a generalisation would alter the results regarding
energy-efficiency to a noticeable extent. The most prominent difference would be the
extra energy consumption of a channel equaliser. On the other hand, the energy effects
of frequency selectivity should be taken into account if the comparison happens to be
between narrow-band and wide-band alternatives since the latter would have to cope with
frequency selectivity through an energy consuming equaliser.
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Table 2.1: Short survey of root-mean-square (RMS) delay spreads TRMS

reported in the literature. Average values are typically about 40 ns, but
averages up to 100 ns are found in some cases.

Reference Frequency Environment RMS delay spread TRMS

Mean St. dev. Worst
GHz ns ns ns

Bohdanowicz
et al. (1999)

17 Corridor 36 16

Canteen 36 12
Office 16 4
Parking 53 12

Zhao et al. (2002) 5.3 Urban 44
Suburban 66
Rural 22

Win et al. (1997) (UWB) Forest 38 7
Ghassemzadeh
et al. (2004)

5.0 Indoor (res-
idential)

<12

Poon and Ho
(2003)

2.0–8.0 Office 20-30

Bultitude et al.
(1989)

0.9 Office floor 26 8

1.7 Office floor 28 17
Saleh and Valen-
zuela (1987)

1.5 Office floor 25 50

Rappaport (1989) 1.3 Factory 100 300
Janssen et al.
(1996)

2.4 Indoor
lab/office

1–17

4.75 1–5
11.5 1-10

Appendix 2.B.2 Propagation loss, shadowing and fading

We have now, by virtue of Assumption 2.5, reduced our linear multi-path model
to a single complex-valued tap and the remaining question is how to model its be-
haviour. In the following we conform to the standard approach in which the channel
gain, modelled by the filter tap, is studied on three different spatial scales: overall
average attenuation over distance (propagation loss), large scale attenuation (shad-
owing), and small-scale attenuation (fading). Albeit on different scales, the three
superimposed models are all on the macroscopic level since they avoid modelling of
the fine details in the environment and rather collect the average behaviour into a
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small number of model parameters.
More specifically, we decompose the channel’s power gain x into three factors,

x = xlxsxf , (2.95)

where the right hand side factors are ordered according to scale of modelling and
represent propagation loss (l), shadowing (s) and fading (f) respectively (we have
for simplicity dropped the explicit time-dependence notation (t)). We will use the
following normalisation of xs and xf .

Definition 2.3 Let xs and xf denote the the contributions from shadowing and
fading to the channel gain in (2.95). Their average power gains are normalised to
unity,

xs = E(xs) ≡ 1,

xf = E(xf) ≡ 1.
(2.96)

From a small scale perspective xl and xs are approximately constant and the changes
in x follow the changes in xf . Moving up one step, we can average over the small
scale changes to obtain

x = xlxs, (2.97)

which over the intermediate (shadow) scale follows xs since xl is almost constant.
Finally, on the overall scale we have

x = xl. (2.98)

The division into three different scales is of course not clear-cut and there generally
tends to be some overlap between the effects from each.

Distance dependent propagation loss

If transmission takes place in free space by the use of an isotropically radiating
antenna the channel is, for any fixed transmitter and receiver positions, truly de-
scribed by one complex-valued tap with a time-independent power gain x(t) ≡ x.
This gain will however be distance dependent: The transmitted power will be spread
over a sphere of area 4πd2 resulting in a free-space propagation gain

xfree−space(d) ∝ d−2, (2.99)

where d is the distance separating transmitter and receiver. For practical transmis-
sion environments there is no corresponding general formula, but empirical evidence
and the need for simple models has led researches to generalise the free-space for-
mula to the average power law

xl(d) ∝
(

d

d0

)−κ

(2.100)
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which refers to the channel’s average power gain, and where d0 is a reference dis-
tance depending on the environment.17 For some special cases one can motivate
a particular value of the propagation loss exponent κ. For instance, by the use of
a two-path model one can show that the propagation loss exponent under some
conditions converges to κ = 4 for large d (Parsons, 2001, Sec. 2.3.3). Generally,
however, the power-law model is a fairly crude empirical model used for overall
trade-off analyses, and there are several other proposed models that are more spe-
cific and accurate (Parsons, 2001, Sec. 3.6). Specialisation of the propagation loss
model to specific scenarios leads to a loss of generality, and we choose to use the
power law model in (2.100), see Assumption 2.8,

The overall average power gain xl = x of the single-tap channel follows
a power law attenuation x ∝ (d/d0)

−κ over distance d, where κ is the
propagation loss exponent.

Remark 2.9 The more accurate a model is the better, provided that we possess
reasonable knowledge of the model parameters. If we were to replace (2.100) with a
more accurate model we would have to cope with more parameters. In this case our
judgement is that additional parameters would not improve our general trade-off
analysis enough to motivate their use, but we acknowledge that (2.100) is not very
accurate in all scenarios.

In Table 2.2 we give representative values for a few different environments. It
seems that propagation loss exponents κ typically reside in the range [2, 4], but
values slightly below 2 and in the range [4, 5] are not too uncommon. Values above
5 and below 1.5 are however rare.

Large scale shadowing

The propagation loss model in (2.100) accounts only for the average loss over dis-
tance. No real environment is smooth, or isotropic, enough to be well described
by this model only, so the next step is to include large obstacles (with respect to
the wavelength of radio carrier) that blocks or attenuates the signal. As such, the
model should capture variations around the prediction given by (2.100). One may
reason as follows (Goldsmith, 2005, p. 50). A blocking object of thickness dt at-
tenuates the signal power by a factor exp(−cdt) where c is a material-dependent
attenuation constant. Several consecutive blocking objects of different thickness,
but identical attenuator constants, give an attenuation exp (−c

∑
dt). Assuming

a large number of objects we may invoke the central limit-theorem and assign a
Gaussian distribution for

∑
dt. Consequently, when a change of variables accord-

ing to xs ∝ exp(−c
∑

dt) is carried out, the channel power gain x ∝ xs is assigned
a log-normal distribution. While the theoretical motivation just given is not fully

17The average is over all positions separated by a distance d, and over time if the
environment is changing; it is assumed that the distance does not change as this would
obviously introduce a time dependence.
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Table 2.2: Measured propagation loss exponents in published papers based
on the empirical model (2.100). A selection has been made based on rel-
evance to the topic of wireless sensor networks (for instance, no highly
elevated, mast mounted antennas). Results are given for a range of data
sets, see the Range column, and sometimes for a the total of all data sets,
see the Overall column. Consult the references for more details.

Reference Frequency Environment Loss exponent κ
Range Overall

GHz

Durgin et al.
(1998)

5.85 Indoor (residen-
tial)

3.3–3.5 3.4

Outdoor (garden) 2.9–3.0 2.9
Seidel and Rappa-
port (1992)

0.91 Grocery store 1.8 1.8

Retail store 2.2 2.2
Office 1 2.7–4.0 3.5
Office 2 3.3–(-) 4.3
All locations 3.1

Sohrabi et al.
(1999)

0.8–1.0 Office building 1.4–2.2 1.9

Hallway 1.9–2.2 2.0
Parking structure 2.7–3.4 3.0
Corridor 1.4–2.4 1.9
Patio 2.8–3.8 3.2
Concrete canyon 2.1–3.0 2.7
Plant fence 4.6–5.1 4.9
Small boulders 3.3–3.7 3.5
Sandy beach 3.8–4.6 4.2
Dense bamboo 4.5–5.4 5.0
Tall under-bush 3.0–3.9 3.6

Janssen et al.
(1996)

2.4 Indoor lab/office 1.9–3.3

4.75 2.0–3.8
11.5 1.9–4.5

Di Renzo et al. (UWB) Forest 2.5–2.7
Suburban 2.6–3.5
Hilly 2.2–2.3
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satisfactory – it seems a little too specialised – there is good empirical support for
the log-normal assignment, see for example the work by Salo et al. (2007) and the
references therein.

By convention, the severity of the log-normal shadowing is given by the standard
deviation σdB of the Gaussian distribution in the dB domain.18 Based on this
macroscopic modelling parameter, our probability assignment for the channel gain
x (averaged over the small scale effects in xf) is

p(x|x, σdB) =
1

x
· μ√

2πσdB

e
− 1

2σ2
dB

(
μ ln(x/x)−σ2

dB
2μ

)2

(2.101)

where μ ≡ 10/ ln(10) and x = xl is the overall average. So, given the overall average
x from the propagation loss model (2.100) and the environment characteristic σdB

we summarise our uncertainty with the probability assignment in (2.101). As short-
hand we will use LogN(x, σdB) to denote the log-normal distribution with mean x
and dB-variance σ2

dB. Consequently, through a change of variables we assign a
LogN(xs|1, σdB) distribution for xs.

The log-normal sample standard deviation is the value quoted in analyses of
channel measurement data. In Table 2.3 we give a selected collection published
results which we believe are relevant in our context. Although the log-normal
model enjoys good empirical support and is widely used, other models have been
proposed. Abdi and Kaveh (1999), for instance, do argue that the Gamma model
in many cases works just as well with the additional advantage of computational
tractability. Fully aware of other proposed alternatives we will use a log-normal
assignment as stated in Assumption 2.7 on page 29;

The (large scale) shadowing effects are well characterised by their stan-
dard deviation σdB. We use a log-normal assignment p(xs|xs, σdB, I) =
LogN(xs|xs, σdB) for xs, with the normalised average xs = 1.

Small scale fading

We note from (2.92) that the filter tap in our linear channel model is a sum of
complex-valued multi-path contributions. So far we have accounted for average
attenuation through the propagation loss model and the large-scale shadowing ef-
fects through the log-normal assignment, but from (2.92) it is clear that small-scale
changes to individual path delays τn(t) can influence the channel power gain x(t)
even if the individual paths are not resolvable. Constructive/destructive combining
of paths depend on the delays, and the common term for these multi-path induced
variations is fading.

When the number of multi-path components N(t) is large we can invoke the
central limit-theorem for the sum of complex-valued path contributions and as-
sign a two-dimensional zero-mean Gaussian distribution for the filter tap a0(t). As

18Observe that σ2
dB is not the variance of the log-normal distribution, but the variance

of the Gaussian distribution.
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Table 2.3: Measured sample standard deviations σdB for fluctuations around
the local mean. As far as we know, all included studies have averaged out
small scale fading, but it is not always clear were the line between the large
and the small scales are drawn.

Reference Frequency Environment Standard deviation
Range Mean

GHz dB dB

Durgin et al.
(1998)

5.85 Indoor (residen-
tial)

7.3–8.3 8.0

Outdoor (garden) 6.4–9.0 7.9
Seidel and Rappa-
port (1992)

0.91 Grocery store 5.2 5.2

Retail store 8.7 8.7
Office 1 4.3–11 13
Office 2 5.2–(-) 13
All locations 16

Sohrabi et al.
(1999)

0.8–1.0 Office building 2.4–3.6 2.4

Hallway 1.7–3.3 2.8
Parking structure 1.5–4.1 2.8
Corridor 2.0–4.0 2.8
Patio 1.0–3.0 1.9
Concrete canyon 2.2–4.5 3.2
Plant fence 1.7–2.2 3.1
Small boulders 3.0–4.3 3.6
Sandy beach 1.5–3.2 2.0
Dense bamboo 0.6–6.8 3.4
Tall under-bush 2.0–4.0 2.9

Healey et al.
(2000)

2.4 Residential cam-
pus

9

consequences we assign a Rayleigh distribution for the amplitude gain ς and an
exponential distribution for the power gain x. Undoubtedly, the Rayleigh distribu-
tion is the most common small-scale fading distribution assignment found in the
literature. But, the use of the central limit theorem relies on equal (or nearly equal)
path gains an(t), and knowledge about deviations from this assumption has been
incorporated by both S. O. Rice and M. Nakagami (Hashemi, 1993).

The more general approach of the two was taken by Nakagami (1960) who made
allowance for arbitrary path gains an(t). His assignment, based on an approximate
solution to his original sum-of-random-vectors problem, is now called the Nakagami-
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m distribution and is for the envelope gain

p(ς|m, x) =
mm

xmΓ(m)
ς2m−1e−

m
x ς2

. (2.102)

Here m ∈ (0,∞) is called the fading figure and x = E(ς2) = xlxs is the average
power gain.19 The corresponding distribution for x is the gamma distribution

p(x|m, x) =
mm

xmΓ(m)
xm−1e−

m
x x. (2.103)

The Nakagami-m (gamma) distribution includes the Rayleigh (exponential) dis-
tribution as a special case when m = 1.20 We can also represent the non-fading
channel by letting m → ∞. The Nakagami-m assignment use two macroscopic
parameters, m and x, where the former captures the severeness of the fading.

We will in this thesis make extensive use of Assumption 2.6 on page 29;

The (small-scale) fading is well characterised by the Nakagami-m fad-
ing figure m. We use a gamma distribution p(xf |m, xf , I) = Gam(xf |m, xf)
for xf , with the normalised average xf = 1.

Our motivation of the Nakagami assumption is fourfold.

• The Rayleigh distribution is in many cases inadequate; it can often not char-
acterise the channel’s small scale behaviour well enough. Several measure-
ments campaigns – including our own, see Chapter 3 – have lead to this con-
clusion, which is also theoretically supported by the fact that the Rayleigh
distribution cannot properly account for different path gains. Hashemi et al.
(1994) made an extensive measurement campaign at 1.1 GHz in an office
environment and tested different distributions, and they found that “[T]he
Weibull and Nakagami distributions provide the best fit for most cases.
Rayleigh fit is poor for almost all cases.” Sheikh et al. (1993) came to a sim-
ilar conclusion “[T]here is a considerable deviation from the Rayleigh slope
suggesting unsuitability of the Rayleigh model. ...Our finding suggests that
for most of the measurements, the Nakagami model fits the best.” Further
support is given by explicit estimation of the Nakagami-m parameter; see ex-
amples in Table 2.4. As opposed to the Rayleigh distribution, the Nakagami
distribution captures all different degrees of fading through the m parameter.

• The degree of fading has a large impact on the attainable wireless communi-
cation performance, see Section 2.2.3. This is especially true for small m, and
relatively small deviations from the Rayleigh assumption m = 1 can cause

19The approximation used by Nakagami holds for m > 1/2 but the probability distri-
bution is normalisable and well behaved for all m > 0.

20Additionally, it closely resembles the Rice distribution which assumes one strong path
accompanied by several weak, approximately equal, paths. For m = (K + 1)2/(2K + 1),
where K ≥ 0 is the Rice factor, the Nakagami-m distribution provides a good fit to the
Rice distribution (Hashemi, 1993).
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Table 2.4: Published estimates of Nakagami-m fading figures.

Reference Frequency Environment Fading figure m
GHz Range Mean St.d.

Beauvarlet and
Virga (2002)

30 Office corridor 1.0–4.5

Abouraddy and
Elnoubi (2000)

10 Office floor 1.4–12.5

Rubio et al.
(2007)

0.9 Urban 1.5 0.34

Wennström
(2002)

1.8 Office floor 1.1–6.3

large changes in the required transmit energy. For this reason, the degree
of fading is important in the topic of energy efficient communication under
processing cost. We need to somehow incorporate it, be it in terms of the
Nakagami-m, the Weibull, or the Rice distributions.

• The m parameter has numerically the same impact on average bit error
rate performance as an mth order diversity system has in Rayleigh fading
(Proakis, 2001, Sec. 14.4.1). Hence, the Nakagami-m distribution is conve-
nient for analysis of diversity systems under different degrees of fading. In
our context, this has importance when we study the possible energy-wise
gains of utilising diversity in sensor network communication.

• The Nakagami-m distribution lends itself to tractable performance calcula-
tions in terms of bit error rates and outage capacity, see Section 2.2.3.

Remark 2.10 Observe that we here find that the extra model parameter m of the
Nakagami-m distribution is well motivated. This is in contrast with the propagation
loss modelling (2.100) when we preferred to keep the model simple, see Remark 2.9

Appendix 2.B.3 Temporal characteristics

Shadowing and fading have been described as time-dependent variations in the
channel gain x, but we have said nothing about how fast changes occur. It is
common to quantify the speed of change by use of the coherence time TC as defined
by the autocorrelation function of the impulse response in (2.91) (Proakis, 2001,
Sec. 14.1.1). In essence, the coherence time quantifies the time over which the
channel impulse response is practically unchanged. Let us define four types of
temporal channel characteristics, here restated from Definition 2.1 on page 30;

Let TP be the duration of a packet in seconds, and let TIP be the
(average) time between the beginning of each packet; the inter-packet
duration. The channel coherence time is TC.
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1. If TC → ∞, then the channel is static

2. If TIP 
 TC < ∞, then the channel is quasi-static

3. If TP < TC < TIP, then the channel is slow

4. If TC < TP, then the channel is fast

Appendix 2.C Communication performance in shad-

owing and fading

Receiver performance is fundamentally dependent on the received signal-to-noise
ratio per bit

γ ≡ Erec

N0
, (2.104)

where Erec is the received energy per bit and N0 is the noise power spectral density
(assumed constant over the receiver bandwidth).21 The received energy per bit
is directly proportional to the energy per bit Erad radiated from the transmitter’s
antenna and the power gain x of the channel,

γ ∝ x
Erad

N0
. (2.105)

Due to this proportionality we can apply our propagation loss, shadowing and
fading models also for γ.

Appendix 2.C.1 Average bit error rate

The probability of a bit error is in a static Gaussian channel determined by the
constant signal-to-noise ratio γ per bit and, of course, the transmission scheme
used. Although differences exists between transmission schemes, the overall impact
of the per-bit signal-to-noise ratio is similar for most schemes, at least to first order.
We here illustrate the degradation in average bit error rate performance induced by
fading by the use of differential binary phase shift keying (DBPSK). Over a static
Gaussian channel the expected bit error rate B(γ) (or equivalently, probability of
bit error) is

B(γ) =
1

2
e−γ , (2.106)

see (Proakis, 2001, Eq. (5.2-69)). Under the assumption that the receiver can obtain
perfect estimates of the channel taps while the transmitter transmits at constant
rate and power, we find the average bit error rate B(m, γ) over a Nakagami-m

21The signal-to-noise power ratio γP = Prec/Pnoise is related to the signal-to-noise ratio
per bit by γP = γRb/W , where Rb is the bit rate and W is the bandwidth of the receiver.
This relation rests on the assumption of a matched filter receiver.
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Figure 2.6: Average bit error rates B for differential binary phase shift
keying in three different degrees of fading. The leftmost curve corresponds
to the static Gaussian channel, the middle curve to Nakagami fading with
fading figure m = 2, the rightmost curve to Rayleigh fading (m = 1).

channel as follows,

B(m, γ) =

∞∫
0

B(γ)p(γ|m, γ)dγ =
1

2

(
m

m+ γ

)m

. (2.107)

Henceforth, we simplify the notation by using B without explicitly expressing its
dependence on the channel parameters. For large average signal-to-noise ratios γ
we obtain

B ≈ mm

2γm ∝ γ−m, (2.108)

which signifies the impact of m on the performance. We find with the aid of
Mathematica 6 (Wolfram Research Inc., 2007) that the same scaling behaviour
B ∝ γ−m holds also for coherent phase shift keying (PSK), coherent frequency
shift keying (FSK), non-coherently detected frequency shift keying (NCFSK) and
M -ary quadrature amplitude modulation (MQAM). In conjecture, all modulations
with exponentially decreasing bit error rates with increasing signal-to-noise ratio
per bit will display the γ−m error behaviour in Nakagami-m fading. In Figure 2.6
we show the DBPSK bit error rates for static and Nakagami-m fading channels.
Observe that

• Without doubt the fading can incur a large increase in transmission energy,
especially for low bit error rates in Rayleigh fading (m = 1). For instance, to
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maintain B = 10−6 in Rayleigh fading the transmitter must use an output
power level which is more than 30 000 times higher than in the static channel
case (m → ∞).

• However, a change in the Nakagami parameter from m = 1 to m = 2 yields
a reduction in output power of more than a factor 300. Consequently, even
relatively small deviations from m = 1 can be important from an energy
perspective.

We argue that the strong sensitivity to changes in m renders a pure Rayleigh
assumption m ≡ 1 misleading in assessments of energy efficiency.

Example 2.5 Node Density and the Nakagami-m Parameter

Assume that we are to deploy a wireless sensor network in an area where the
propagation loss exponent κ = 3.5. Given the nodes’ maximum transmit power
and a required average bit error rate B = 10−6 we have found that the inter
node distance in Rayleigh fading should be dm=1. But what if the small-scale
fading is instead best characterised by m = 2? From (2.108) we find that the
required signal-to-noise ratio per bit then decreases by a factor of 354. By the
use of the power law propagation loss model in (2.100) we obtain an increase
in inter-node distance to dm=2 = (354)1/κdm=1 = 5.35dm=1. Consequently, by
increasing the inter-node distance by a factor 5.35, the number of nodes required
to ensure communication at the given level is reduced to 5.35−2, or 3.5 percent,
of the Rayleigh calculation. In other words, an over-deployment by a factor of
5.352 = 28.6 has been avoided.22

The criterion of average bit error rate will in most cases be enough for assessing
the energy efficiency of different transmission approaches, and we will make use of
it several times in this thesis. But, in some applications it can be more appropriate
to replace, or complement, the average bit error rate with the so-called outage
criterion as discussed next.

Appendix 2.C.2 Outage performance

A wireless connection is said to be in outage if the received signal-to-noise ratio is
below a certain level γout. By classifying channel condition as good or bad, and
accepting loss of connectivity with a specified probability Pout, we suspend the
impact of the worst conditions on the average performance. Likewise, under good
conditions, we disregard from the fact that there are different degrees of “good”.
The outage criterion is thus of quite different character than the average criterion.

22Here, we have implicitly assumed that it is the communication that limits the node
spacing, not the sensing application. This may not hold in some cases.
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For the Nakagami channel we obtain the outage probability Pout = P (γ <
γout|m, γ) by integration over the gamma distribution,

Pout =

γout∫
0

mm

Γ(m)γm γm−1e−
m
γ γdγ = 1−

Γ
(
m, mγout

γ

)
Γ (m)

, (2.109)

where Γ(·, ·) is the incomplete gamma function. For small outage probabilities we
can expand the expression around γout/γ = 0 to find that

Pout =
mm−1

Γ(m)

(
γout

γ

)m

+O

((
γout

γ

)m+1
)

. (2.110)

Hence, we have the same qualitative behaviour as displayed in (2.108) for the av-
erage bit error rate; the error probability decays like γ−m. Neglecting higher order
terms we can use

γ = mγout (mΓ(m)Pout)
−1/m

. (2.111)

For instance, assume that the channel is quasi-static as given by Definition 2.1.
Assume further that the application-specific goals can be met if i) less than one
in a hundred packets are lost and ii) in the accepted packets the average bit error
rate B ≤ 10−6. Consequently, γout is determined by the performance (2.106) over
a Gaussian static channel; γout ≥ 13.12 = 11.2 dB is required for B = 10−6.
In Rayleigh fading, we obtain from (2.111) that γ ≥ 1300 = 31 dB to achieve
Pout = 0.01. Compare this with the required γ = 5 · 105 = 57 dB to achieve
an average bit error rate B = 10−6 in Rayleigh fading. Which of the criteria that
should be used–average, outage, or a combination–is determined by the application.

Considering shadowing effects, we can specify an acceptable outage probability
Pout = P (γ < γout|γ, σdB) and find from the log-normal distribution in (2.101) that

Pout =

γout∫
0

1

x
· μ√

2πσdB

e
− 1

2σ2
dB

(
μ ln(x/x)−σ2

dB
2μ

)2

dγ

=
1

2

[
1 + Erf

(
σdB

2
√
2μ

− μ√
2σdB

ln

(
γ

γout

))]
.

(2.112)

Here, μ = 10/ ln(10) and Erf(·) is the error function. We note that to maintain a
certain outage probability for different shadowing degrees σdB roughly corresponds
to a constant value of the second term inside the error function; ln(γ/γout)/σdB =
const. Therefore, the average signal-to-noise ratio γ must scale approximately ex-
ponentially with σdB, and we see in Figure 2.7 that the increase is in fact super-
exponential. As a consequence, just like in the Rayleigh-Nakagami small scale case,
care must be taken as worst case designs will grossly over-estimate the need for
large transmit powers.
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Figure 2.7: The ratio of the required average signal-to-noise ratio γ to
the outage signal-to-noise ratio γout. When the standard deviation σdB of
the shadowing effects increase there is a super-exponential growth in the
required margin γ/γout. The top curve corresponds to an accepted outage
probability Pout = 0.01 while the lower curve corresponds to Pout = 0.1.

Appendix 2.C.3 Channel capacity

Shannon (1948a,b) found the ultimate performance limit for error-free communi-
cation over a bandlimited static channel corrupted by Gaussian noise. His limit
states that the maximum bit-rate C is

C = W log2 (1 + γP) [bit/s], (2.113)

where W is the bandwidth and γP = γC/W is the constant received signal-to-
noise ratio for bit rate Rb = C. He also showed that there exists error correcting
codes that can achieve this limit. Over fading channels, there is not one single, all-
encompassing, capacity result to quote since the capacity depends on what is known
about the channel behaviour and also the information about the channel available
at the transmitter and the receiver. In almost all cases however, the capacity is
degraded by fading23.

For wireless sensor networks with long idle times and short packets, the most

23One exception is the capacity achieved for small signal-to-noise ratios when both the
transmitter and the receiver have perfect information about the channel state at each
moment (Goldsmith, 2005, p. 109). So-called water filling can then be applied by the
transmitter; it makes use of good channel conditions to increase the bit rate, and the gain
from this is larger than the loss during bad channel conditions.
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appropriate capacity measure is probably that of outage capacity.24 It applies to
quasi-static fading when there are long periods of fairly static channel conditions,
but long-term fading. The outage probability-capacity relation in Nakagami fading
is found from (2.109) and (2.113), and we obtain

Pout = 1−
Γ
(
m, m 2C′−1

γC′

)
Γ(m)

=

(
2C′−1
γC′

)m

mΓ(m)
γ−m +O

(
γ−m−1

)
, (2.114)

where C′ = Cout/W is the outage spectral efficiency and Pout = P (C < Cout|m, γ).
It is impossible to achieve a non-zero capacity at zero outage probability for any
finite m. For finite m there is always a non-zero probability of a channel zero, and
error-free communication can not be guaranteed. At all non-zero outage probabili-
ties, however, we observe the same error behaviour as before, namely Pout ∝ γ−m.

24So-called ergodic capacity is achieved by extremely long codewords that make sure that
each codeword can cover all fading states and thereby correct all errors without transmit
adaptivity (Goldsmith, 2005, p. 104). Under this assumption the ergodic capacity is

Cerg = W

∞∫
0

log2(1 + γP)p(γP|m, γP)dγP

The presupposed use of very long codewords makes ergodic capacity less well suited than
outage capacity for assessing communication limits in data gathering networks.



Chapter 3
Fading and Polarisation Diversity,

Channel Measurements and

Analysis

DUE to destructive and constructive interference between radio signals
that travel different paths from transmitter to receiver, there can be

spatial and temporal variations of considerable magnitude in the received
signal strength. This so-called multi-path fading can cause differences in
the received signal-to-noise ratio of several orders of magnitude, even for
displacements of less than half of the carrier wavelength. Deep fading dips
disturb the wireless communication, and to ensure sufficient performance
even during the rare, unpredicted, dips the transmitter has to use an output
power that is much larger than a non-fading channel would require. For
example, Figure 2.6 in Appendix 2.C shows that the output power required to
guard against Rayleigh fading at a bit error rate B = 10−6 is more than 38000
times (46 dB) larger than required for a non-fading channel.1 Between these
extremes there is a range of fading degrees, and as a consequence a range of
required transmission energies, that we must consider in the design of energy
efficient wireless sensor networks (see Example 2.5 for an illustration).

Although there are many published papers regarding channel measure-
ments and modelling in general, there is a lack of sensor-network specific
channel measurements with low-lying antennas or close-to-wall types of ar-

1The result pertains to differential binary phase shift keying with its bit error rate
averaged over a Rayleigh distribution for the received signal-to-noise ratio per bit. Perfect
channel state information at the receiver is assumed.

73
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rangements. Those that exist, for instance the work by Sohrabi et al. (1999),
are to the best of our knowledge focussed on propagation loss and/or shad-
owing. The lack of relevant measurements of the degree of fading – which we
have chosen to include via the Nakagami fading figure m – in combination
with its large impact on the transmission energy is our first motivation to
perform sensor-network specific channel measurements.

From an energy perspective, the main problem with fading multi-path
channels is that it takes a lot of extra transmit power to overcome rare but
very severe channel conditions. Guarding against the occasional deep fading
dip by adjusting a constant power level wastes significant amounts of trans-
mission energy. To counter the negative effects of fading more efficiently
we can make sure that each information bit is “spread” over several channel
states and utilise this diversity to improve performance. Error correcting
codes utilise time diversity against noise and fast fading, but does not work
well in slow fading. Frequency diversity can be achieved by spreading or
multi-carrier communication, and hence requires larger bandwidth than the
original signal. Array antennas facilitates the use of spatial diversity, spread-
ing information over different spatial channels, but this is seldom an option
for sensor nodes due to their limited size. Therefore, polarisation diversity
suggests itself as an attractive possibility thanks to its compact configura-
tion.

According to Almers et al. (2007) surprisingly little attention has been
paid to polarisation properties in channel modelling, and we agree. Vaughan
(1990) studied the viability of polarisation diversity for mobile cellular com-
munications, but we have found no characterisation of the polarisation prop-
erties of wireless sensor network channels. Polarisation diversity will be of
practical use only if the polarisations vary with sufficient independence from
each other. Otherwise, if polarisations are strongly correlated, fading dips
will occur simultaneously and the performance is not improved. This has
motivated us to investigate polarisation diversity, and this chapter contains
an analysis of the correlation properties and diversity gains for measured
channels.

3.1 Polarisation diversity

Before we describe our measurements, let us define gain metrics for diversity
systems and discuss how energy gains from diversity is affected by fading
degree and branch correlations. In the analysis of antenna-diversity perfor-
mance, there are two general type of metrics commonly referred to as the
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array gain and the diversity gain. The first refers to an increase in the aver-
age signal-to-noise ratio achieved by receiving multiple copies of the signal,
while the latter refers to the decreased variability in the resulting signal.
Below we make the meanings more precise.

Definition 3.1 The array gain AD of a diversity system is the increase in
average signal-to-noise ratio achieved,

AD ≡
γP,c

γP,branch

, (3.1)

where γP,c is the average signal-to-noise (power) ratio of the combined signal,

and γP,branch = (
∑M

n=1 γP,n)/M is the average signal-to-noise ratio over all
branches n = 1, 2, . . . ,M .

Note the difference between average signal-to-noise ratio over all branches
and the branch-wise average signal-to-noise ratios. The array gain with
respect to a specific branch n will be denoted

AD,n ≡
γP,c

γP,n

, (3.2)

where γP,n is the average signal-to-noise ratio for the nth branch.

Definition 3.2 If the average-error behaviour for large average branch signal-
to-noise ratios can be asymptotically expressed

Perror ∝
(
γP,branch

)−M
, (3.3)

the diversity order of the system is M . Here, Perror is the probability of error
under consideration, that is bit error, symbol error or outage.

Observe that Definition 3.2 of diversity order regards the joint properties of
the channel and the diversity scheme. For instance, the bit error rate for
non-diversity differential binary shift keying over a Nakagami-m channel is
B ∝ γ−m

P , see Appendix 2.C, showing that the inherent diversity order of
the Nakagami-m channel is m.

Definition 3.3 The inherent diversity order of a Nakagami-m channel is
m.

This does not mean that the channel has any inherent diversity, but rather
that the communication performance behaves as if we had a diversity system
communicating over a Rayleigh fading channel.
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Definition 3.4 The diversity order gain of a diversity scheme is Δ if the
branch-wise average-error slopes are given by (3.3) and the diversity scheme
improves this to

Perror ∝
(
γP,branch

)−Δ·M
. (3.4)

That is, the diversity order is improved by a factor Δ from M to ΔM .

A diversity scheme with diversity order gain Δ = 2, say, will in Nakagami-m
fading achieve an asymptotic bit error rate B ∝ γ−2m

P,branch.
2

3.1.1 Transmission energy gains in Nakagami fading

In the present context of energy efficient transmissions, we recognise two
important facts about diversity order and degree of fading.

First, we see that if the required output power scales like P
−1/M
error , there

are diminishing returns from an increased diversity order from Δ to Δ+ 1.
For example, with Perror = 0.01 the transmission energy gain in going from
M = 1 to Δ · M = 2 is about (0.01−1)/(0.01−1/2) = 10, while the gain in
going from order Δ ·M = 2 to (Δ+1)M = 3 is (0.01−1/2)/(0.01−1/3) = 2.15.
The main gain is achieved when introducing diversity.

Second, remembering that the Nakagami-m channel has an inherent di-
versity order m, we conclude that the transmission energy gains from em-
ployment of diversity systems are strongly dependent on the fading figure.
A scheme which in Rayleigh fading achieves a transmission energy gain GD

from the error slope, will in Nakagami fading achieve (GD)
1/m. The effect

becomes more accentuated as the error probabilities get lower: The harder
requirements we pose on performance, the larger the gains from diversity.
But the larger the gains from diversity are, the more sensitive they are to
the Rayleigh fading assumption. For assessment of diversity transmission
energy gains it is important to consider the degree of fading, not only the
order gain Δ of the scheme.

3.1.2 Unequal branch quality and branch correlations

It is important to consider the effects of correlations and uneven branch
qualities because these effects lower the achievable diversity gains. Simon
and Alouini (1999) have performed a quite thorough investigation of the

2Note that the definition of Δ does not hold for branches with different m. Combining
two branches with different fading figures m1 �= m2 results in diversity orders gains that are
generally not expressible in a simple closed form, because combing two gamma distribution
does not generally result in a new gamma distribution (Wolfram Research Inc., 2007).
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matters for dual branch receiver selection-diversity systems3 in Nakagami-
m fading, and find that the diversity order gain of 2 is maintained even
for correlated branches of uneven quality. However, a branch correlation
coefficient c = 0.9 incurs a signal-to-noise penalty of about 5 dB, while
c = 0.5 incurs approximately 2 dB in penalty. We will assess the branch
dependence in our measurements by use of the sample correlation coefficient.

Definition 3.5 The branch sample correlation coefficient c for a dual polar-
isation scheme is

c ≡ Ĉov (ξV, ξH)

σ̂Vσ̂H
, (3.5)

where ξV and ξH are the channel envelope gains vertical (V) and horizon-

tal (H) polarisations respectively, while Ĉov and σ̂ denote envelope sample
covariance and envelope sample standard deviations respectively.

Even if branches are independent, the practical diversity order gain can
be smaller than expected if the branches’ signal-to-noise ratios are very dif-
ferent. This is because the branch of low quality seldom can contribute to
the combined signal quality; in the limit of infinitely different branch quali-
ties the dual branch system is effectively reduced to a single branch system.
However, we still have the possibility to use the best branch and thereby gain
signal quality even if we can not reduce the fading in that branch’s signal.
Regarding branch quality, Simon and Alouini (1999) found, specifically for
selection diversity, that a 10 dB difference in average branch signal-to-noise
ratios incurs approximately a 5 dB penalty.4

3.2 Measurement description

We chose two different environments where sensor networks are likely to be
deployed; the forest and the office. Our investigations included both trans-
mit and receive polarities – vertical and horizontal. All measurements were
carried out using a pure carrier wave, so no information on delay spread was
obtained. The signal generator provided a frequency reference for the vector
signal analyser and they were thus always locked to the same reference os-
cillator. For each location and transmitter-receiver polarisation combination
a 1.5 m sweep along a linear guide was performed on the receiver side while

3A receiver that uses only one branch at a time, but always the best one.
4To be strict, the branch quality is not merely the average signal-to-noise ratio γ

P,n

but includes also the fading figures mn (which can be different for different polarisations).
Simon and Alouini (1999) assumed equal m for both branches.
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Table 3.1: Measurement setup and parameters for the conducted measure-
ments. All sweeps were performed for all four transmitter-receiver polarisa-
tion pairs VV, VH, HV and HH, where V denotes vertical and H horizontal.
Non-line-of-sight (NLOS) and line-of-sight (LOS) conditions are indicated.

Environment Frequency Distances Sweeps
MHz m

Forest 868 [8, 16, 24, 32, 40] 1

2400 [8, 16, 24, 32, 40] 1

Office floor 434 [8, 16, 24, 32, 40, 48] 1

(LOS) 868 20 9

2400 [8, 16, 24, 32, 40, 48] 1

Office floor 434 20 15

(NLOS) [8, 24, 32, 48] 1

[8 16 24, 32, 40, 48] 2

868 20 30

2400 20 30

recording the in-phase and quadrature samples. All sweeps included in the
following analysis are summarised in Table 3.1.5

3.2.1 Forest

Measurements were taken in a forest area with medium to tall trees accompa-
nied by light understorey. The terrain is slightly undulating, see Figure 3.1.
During the measurements the transmitting antenna was stationary, placed
15 cm above the ground. The receiving antenna was moving at a constant
speed of roughly 0.1 m/s along a linear guide. The average distance to
the ground was about 25 cm, but variations caused by ground roughness
were present. Data were collected for two carrier frequencies, 868 MHz and
2400 MHz respectively.

5A couple of sweeps had to be discarded due to haphazard quantisation errors in the
vector signal analyser. The quantisation in these measurements were severe and would
have distorted the result considerably if included. The exclusion of some sweeps explains
why the measurement setups in Table 3.1 are not complete.
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Figure 3.1: Example picture from the forest in which measurements where
performed. There were greater variation in the undulation and the density
of the understorey than displayed in the figure.

3.2.2 Office floor

Office measurements were taken at the second floor in house 7 at the Ångström
Laboratory, Uppsala University. The building has concrete outer walls and
floors, but most inner partitions are plaster walls (with metal support). The
antennas were kept close to the floor and/or close to a wall in order to achieve
sensor network like transmission conditions. Figure 3.2 shows the floor and
the measurement locations corresponding to Table 3.1.
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Figure 3.2: Floor 2, house 7 at the Ångström Laboratory, Uppsala Univer-
sity. Transmitter (T) and receiver (R) positions during measurements are
labelled (a) or (b) according which batch they belong to. Data were taken
for all combinations of transmitter-receiver locations within each batch.
The data sets were during the analysis grouped into line-of-sight and non-
line-of-sight groups, see Table 3.1.

3.3 Estimation of the m parameter

Adopting probability theory as the logic of inference, our posterior probabil-
ity distribution for the fading figure m summarises our state of knowledge.
The posterior can by application of the sum rule (2.32) and the product rule
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(2.31) be expressed

p(m|D, I) =

∞∫
0

p(m|x,D, I)p(x|D, I)dx (3.6)

=

∞∫
0

p(m|x, I)
p(D|m,x, I)

p(D|x, I)
p(x|D, I)dx, (3.7)

where I denotes all background information we include (essentially the previ-
ous part of this thesis), x is the mean channel power gain, and D denotes the
N collected data points D ≡ {d1, d2, ..., dN }. The index n of each complex-
valued data point dn corresponds to a certain position along the sweep track
used for the receiving antenna. By successive application of the product rule
we can expand the likelihood p(D|m,x, I) for m to

p(D|m,x, I) =
N∏

n=1

p(dn|DN
n+1,m, x, I), (3.8)

where DN
n is the partial data set {dn, dn+1, ..., dN}. The measurements are

corrupted by noise en,

dn = A
√

xn exp(−jθn) + en (3.9)

where
√

xn = ξn is the channel’s amplitude gain for position n, θn is the
corresponding phase shift and A is a known scaling constant determined by
settings on the signal generator and the analyser respectively. For ξn we
have assigned the Nakagami-m prior, and p(xn|m,x, I) is hence the gamma
distribution Gam(m,x), see Assumption 2.6 on page 29. For θn we assign
from translational invariance a uniform prior, while we assign a Gaussian
prior for en by application of MaxEnt under an average power constraint.

We could now obtain p(dN |m,x, I), the last factor in (3.8), by a change
of variables according to (3.9). However, the issue of assigning the remaining
factors p(dn|DN

n+1,m, x, I) introduces the whole new problem of modelling
the dependence between samples: What does the data DN

n+1 tell us about
sample dn? Samples between positions n+1 and N definitely tells us some-
thing about the sample at position n – this is indeed the basis for all channel
prediction methods developed to increase wireless system capacity – but re-
quires the introduction of more detailed, temporal/spatial, channel models.6

6For more information on channel estimation based on probability theory as extended
logic, the reader is referred to the thesis by Aronsson (2007).
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To avoid the complexity that temporal/spatial channel modelling would
introduce we will adopt a simplified estimation approach which includes an
assumption on logical independence between samples: p(dn, dn+1|,m, x, I) =
p(dn|,m, x, I)p(dn+1|,m, x, I). The most prominent loss caused by this sim-
plification is that we cannot obtain a correct measure of the uncertainty in
our estimates, as would have been provided by the posterior p(m|D, I). An
independence assumption will correspond to a certain amount of “sample
reuse” – samples are correlated and carry partly the same information, but
this fact is not recognised under our independence assumption – yielding an
overly optimistic accuracy. However, we conjecture that the estimate itself
will not be changed much as long as the prior p(m|x, I) is vague with respect
to the amount of data used.7 This is indeed the case here if we use the prior
in Figure 2.5 on page 55.

3.3.1 Maximum likelihood estimation with independence

Below we make a couple of simplifying assumptions which we incorporate in
the background information, henceforth denoted I ′ ≡ {I, assumptions}.

True estimate. The marginalisation over the average power gain x in (3.6)
is avoided by assuming that a maximum likelihood (ML) estimate xML

is indeed the true value; p(x|D, I ′) = δ(x−xML). The marginalisation
integral in (3.6) then collapses and we obtain the approximation

p(m|D, I ′) = p(m|xML,D, I ′). (3.10)

No prior information. We omit the prior knowledge about m, which we
indeed have quantified in (2.85), with the motivation that it will, due
to its vagueness, be overwhelmed by the data anyway.8 Let p(m|x, I) =
const. for simplicity, and hence (3.10) becomes

p(m|D, I ′) ∝ p(D|m,xML, I ′). (3.11)

Independent samples. We neglect the logical dependence between mea-
surements dn and let p(dn|DN

n+1,m, x, I ′) = p(dn|m,x, I ′). We thereby

7The estimate will correspond to the situation of a “randomised” data set.
8Observe that if we had very accurate prior information about m, the prior probability

density p(m|x, I) would be sharply peaked and have strong influence on the estimate. The
prior in (2.85) is fairly non-informative, so here it has little influence, but later in the thesis
we must use it because it then represents our state of knowledge in lack of measurements.
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introduce the common assumption of “independent and identically dis-
tributed data” allowing us to rewrite (3.11) to

p(m|D, I ′) ∝
N∏

n=1

p(dn|m,xML, I ′). (3.12)

No noise. The envelope measurements are virtually noise free – the signal-
to-noise ratio in the envelope measurements is typically larger than
20 dB – so we can effectively set

en ≡ 0,

A ≡ 1,
(3.13)

in (3.9). We further assign

p(dn|m,x, I ′) = p(
√

xn|θn,m, x, I ′)p(θn|m,x, I ′)

= p(ξn|m,x, I ′)p(θn|I ′),
(3.14)

because we cannot infer anything about the channel gain xn from the
phase θn, whose value in turn can not be inferred from (m,x).

By Assumption 2.6 on page 29, the likelihood p(ξn|m,xML, I ′) for m is
the Nakagami-m distribution

p(ξn|m,xML, I ′) =
mm

Γ(m)xm
ML

ξn
2m−1e

− m
xML

ξn
2

. (3.15)

We can now express our simplified posterior (3.12) – corresponding to the
full solution in (3.7) – as follows

p(m|D, I ′) ∝
N∏

n=1

mm

Γ(m)xm
ML

|dn|2m−1e
− m

xML
|dn|

2

. (3.16)

Here, we have suppressed all probabilities that are independent of m, for
instance p(θn|I ′), because they do not affect inferences about m. To find the
most probable value mML we take the logarithm of the right hand side of
(3.16), differentiate with respect to m and set to zero. As shown by Cheng
and Beaulieu (2001), the resulting equation to solve is

ln(mML)−Ψ(mML) = ln (xML)−
1

N

N∑
n=1

ln
(
|dn|2

)
, (3.17)
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where the maximum likelihood estimate of x is

xML =
1

N

N∑
n=1

|dn|2, (3.18)

and Ψ(·) = Γ′(·)/Γ(·) is the psi, or digamma, function. We can not solve
(3.17) for the estimate mML analytically, but the solution is readily obtained
numerically.

Remark 3.1 Our long, and to some extent agonising, route via the origi-
nal posterior (3.7) and all simplifications is taken to make sure that no as-
sumptions are swept under the rug. Direct application of (3.18) conceals the
simplifications made, but now we know the assumptions behind the estimate
in (3.17).

In Section 3.3.3 we present the numerical maximum likelihood estimates
calculated from our measurement data, but we first make a digression on
sufficient statistics and maximum entropy. We hereby try to clarify the
connection between the m and x parameters as macroscopic constraints on
the fading gain, and all the simplifying assumptions we have made to arrive at
(3.17). Employing only these constraints in entropy maximisation amounts
quantitatively to the present assumptions on noise and prior information.

3.3.2 Maximum likelihood and maximum entropy

We identify two sufficient statistics for m in the foregoing derivation of the
estimate mML, namely the sample averages

T1(D) =
1

N

N∑
n=1

|dn|2

T2(D) =
1

N

N∑
n=1

ln
(
|dn|2

)
,

(3.19)

which are found in (3.18) and (3.17) respectively. As sufficient statistics,
T1(D) and T2(D) are the only functions of the data that appear in our
posterior9 (3.16) for m. This means that out of all the properties of the data
set D, only T1(D) and T2(D) are relevant to the question we are asking.

Recall Example 2.4 in which we employed the principle of maximum
entropy to assign a fading distribution under constraints on the average

9The statistic T2(D) is present through the relation ln
(∏

|dn|
2
)

=
∑

ln
(
|dn|

2
)
.
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channel power gain E(x|I) ≡ F1 and the average scale of the variations
E(ln(x)|I) ≡ F2. The maximisation of entropy resulted in a gamma distri-
bution

p(x|F1, F2, I) =
mm

Γ(m)Fm
1

xm−1e
−m x

F1 , (3.20)

where the m parameter is found as the solution to

ln(m)−Ψ(m) = ln(F1)− F2. (3.21)

Upon comparing (3.21) with the maximum likelihood estimate in (3.17) we
immediately see the similarity. By replacing the averages in the maximum
entropy solution with their corresponding sample averages T1(D) and T2(D),
the sufficient statistics, we arrive at the maximum likelihood equation (3.17).

The connection with the sufficient statistics in (3.19) is by no means a
lucky coincidence of our particular problem, but comes from the fact that
the class of all maximum entropy distributions is exactly the class of all
distributions with sufficient statistics (Kullback, 1968). The coincidence be-
tween maximum likelihood and maximum entropy is the consequence of two
assumptions :

1. No noise,

2. No prior information,

see (Jaynes, 1982). Remember, however, that T1(D) and T2(D) are not suf-
ficient statistics in the more complete formulation of the problem which is
conditioned on I instead of I ′ which includes the simplifying assumptions
(a discussion of sufficiency and prior information is given by Jaynes (2003,
Ch. 8)). When noise, prior information and nuisance parameters are present
only the full solution as provided by probability theory as logic will be opti-
mal.

By including only the macroscopic constraints on E(x|I) and E(ln(x)|I)
in our channel model, we do not give the maximum entropy principle any
reason to introduce correlations and therefore it automatically introduces
the “independent and identically distributed” assumption. Any correlation
would reduce the entropy in a way the constraints did not warrant.

3.3.3 Numerical maximum likelihood estimates

Here we present the maximum likelihood estimates found from application
of (3.17) to our measurement data. The data sets obtained for different



86 3.3. Estimation of the m parameter

Table 3.2: Nakagami fading figures for vertical (V) and horizontal (H) trans-
mit and receive polarisations respectively in a partly obstructed forest en-
vironment. The left column gives the transmit-receive combination, for
instance VH for vertical transmit polarity and horizontal receive polarity.

Polarisation Fading figure
[−] mML

868 MHz 2400 MHz

VV 1.49 1.75
VH 1.89 1.32
HV 1.59 1.57
HH 1.03 1.57

distances were combined into one set after normalising the received average
power to one.10

Remark 3.2 In our modelling framework we have modelled fading and shad-
owing separately, with the m parameter quantifying the severeness of the fad-
ing only. We here use the data as if no shadowing was present during the
relatively short measurement sweeps. However, shadowing effects do some-
times occur on the same spatial scale as fading and in such cases the m
parameter will be under-estimated since we here consider the fading model
solely – the m parameter becomes smaller in order to account for low received
power in shadowed segments. In that sense, our estimates are conservative.

The results in Table 3.2 pertain to the forest measurements grouped
according to the transmitter-receiver polarisations. At least for a carrier fre-
quency of 868 MHz there are clearly noticeable, but not extreme, differences
between the combinations of polarities. Horizontal-to-horizontal polarisation
is the worst choice with respect to the degree of fading. It is also interesting
to note that the best polarisation for 868 MHz is the worst for 2400 MHz,
indicating that no given polarisation pair is uniformly the best even in a
given environment.

Fading figures for line-of-sight measurements taken indoors are collected
in Table 3.3. As we see in Table 3.3 there are good reasons to believe that

10From (3.17) we find that this does not affect the estimate of m because the equation
can be written

ln(mML) − Ψ(mML) = −
1

N

N∑
n=1

ln

(
|dn|

2

xML

)
.

Normalisation is inherent in the estimate and this is intuitively pleasing as m is perceived
as a “shape” parameter.
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Table 3.3: Indoor line-of-sight measurements. Impact of polarisation on
the degree of fading. V denotes vertical and H horizontal, and are given in
transmit-receive order.

Polarisation Fading figure
[−] mML

434 MHz 868 MHz 2400 MHz

VV 6.07 1.80 2.12
VH 8.69 3.14 1.32
HV 3.85 1.81 3.09
HH 16.2 18.5 0.97

polarisation has quite large impact on the fading degree; some polarisations
are more “richly scattered” than other. It is remarkable that the HH combi-
nation exhibits such extreme differences between low and high frequencies.
On the whole, there is – as expected for a line-of-sight scenario – a dis-
tinct deviation from the Rayleigh distribution m = 1, most pronounced for
434 MHz.

The non-line-of-sight results are given in Table 3.4. We note the signifi-
cant decrease in the fading figure m as compared to the line-of-sight case. For
868 MHz and, especially, 2400 MHz we are now much closer to the Rayleigh
fading case. For these two frequencies there are in addition no obvious polar-
isation advantages with respect to the severeness of the fading. On the other
hand, in the 434 MHz case there remains a clear distinction from the Rayleigh
fading model as well as a difference between polarisations. A plausible ex-
planation is that the lower frequencies better penetrate the indoor walls and
create “partial line-of-sight” – which is precisely what the Nakagami-m model
handles better than the rayleigh model. Horizontal-to-vertical polarisation
seems markedly better than the other choices.

3.4 Polarisation diversity: measured correlations

and diversity gains

In this section we analyse our forest and office measurements with respect
to receiver branch correlations, array gains and the diversity order gain, or
“fading reduction”. Sample correlation coefficients c are calculated according
to (3.5). Individual array gains for each respective receive polarisation, AD,V

and AD,H , are found by application of (3.2), and the common array gain AD

is computed as defined in (3.1).
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Table 3.4: Indoor non-line-of-sight measurements. Impact of polarisation
on the degree of fading. V denotes vertical and H horizontal, and are given
in transmit-receive order.

Polarisation Fading figure
[−] mML

434 MHz 868 MHz 2400 MHz

VV 2.11 1.12 1.03
VH 2.54 1.13 1.08
HV 7.13 1.15 1.01
HH 2.04 1.20 1.15

Since different diversity schemes – such as selection diversity, switched
diversity and maximum ratio combining – have different performance we
cannot present entirely general gains. Our reference diversity technique in
our numerical analysis is maximum ratio combining (MRC); other simpler
schemes are analysed in Chapter 5. We estimate the Nakagami fading fig-
ure m for the combined signal to study the reduction in fading severeness
that maximum ratio combining can achieve. The estimates are obtained by
application of (3.17).

3.4.1 Numerical results for polarisation diversity

In Table 3.5 we summarise the sample correlation coefficients calculated from
our measurements with vertical and horizontal receive polarisations. The
results are encouraging as it seems that the two branches are, for all practical
purposes, uncorrelated; most coefficients are smaller than 0.1. If these results
carry over to other environments, the use of polarisation diversity should
definitely be considered in node radio design.

The array gains achieved by a maximum ratio combining scheme are pre-
sented in Table 3.6. For reference we observe that the theoretical array gain
AD for independent branches of equal quality is 3 dB (Goldsmith, 2005). It
is noteworthy that occasionally the gains from the vertical and horizontal
polarisations differ significantly (for instance the horizontal transmit polari-
sation in the line-of-sight (LOS) case at 434 MHz) and the reason is that one
branch has significantly better average quality than the other. Overall, our
conclusion from Table 3.6 is that polarisation diversity delivers gains close
to what can be predicted from theory.

We give in Table 3.7 the estimated fading figures, which are relevant to
the issue of diversity order. Diversity order is often related to Rayleigh fading
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Table 3.5: Sample correlation coefficients between received polarisations,
estimated as in (3.5). Results are given for each transmit polarity.

Environment Transmit polarity Correlation coefficient c

434 MHz 868 MHz 2400 MHz

Forest V (-) 0.03 -0.14
H (-) -0.10 -0.08

Office V 0.08 0.04 -0.23
(LOS) H -0.35 -0.09 0.07
Office V 0.16 -0.08 0.05
(NLOS) H 0.36 -0.08 0.06

Table 3.6: Maximum ratio combining gains for each combination of
transmit-receive polarisation. Both branch-wise array gains AD,n, see (3.2),
and the array gain AD, see Definition 3.1, are given.

Environment Transmit-Receive MRC array gain [dB]
polarisations 434 MHz 868 MHz 2400 MHz

AD,n AD AD,n AD AD,n AD

Forest VV (-) 0.5 4.5
VH (-) (-) 12 2.8 2.6 2.6
HV (-) 2.6 4.5
HH (-) (-) 5.3 2.3 2.9 2.4

Office VV 1.5 1.1 4.4
(LOS) VH 8.5 2.3 9.6 2.5 2.4 2.7

HV 15 16 4.1
HH 0.44 2.7 0.2 2.9 2.9 2.6

Office VV 6.5 2.1 5.6
(NLOS) VH 2.2 2.2 5.4 2.6 1.7 2.8

HV 3.2 6.8 4.3
HH 6.6 1.4 2.0 2.3 2.2 2.9
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Table 3.7: Estimated Nakagami-m fading figures for the maximum ratio
combined branches. Also displayed is the increase Δ in average fading
figure, an ad-hoc approximation to the diversity order gain in (3.4).

Environment Transmit MRC fading figure / order gain
polarity 434 MHz 868 MHz 2400 MHz

mML Δ mML Δ mML Δ

Forest V (-) (-) 1.84 1.09 3.46 2.25
H (-) (-) 3.58 2.73 2.77 1.76

Office V 8.06 2.18 3.50 1.42 4.00 2.33
(LOS) H 31.6 3.15 20.0 1.97 3.40 1.67
Office V 2.59 1.11 2.20 1.96 1.97 1.87
(NLOS) H 3.56 0.776 2.56 2.18 2.14 1.98

and independent branches, and under these circumstances the maximum
ratio combining approach should attain a dual-branch post-combining fading
figure m = M = 2. Although the order gain Δ is not defined for the case of
different branch diversity orders or different branch qualities, we can get an
idea of the order gain by use of the ad-hoc metric

Δ ≡ 2
mML,D

mML,V +mML,H
(3.22)

which compares the average pre-combining fading figure with the post-com-
bining fading figure. We see in Table 3.7 that with only two exceptions m > 2
and we can again conclude that polarisation branches seem sufficiently un-
correlated to meet theoretical predictions. Regarding the exceptions m < 2
we observe that they pertain to cases with highly unbalanced branch quality
combined with severe branch fading. There are in Table 3.7 also a few excep-
tionally large fading figures which correspond to line-of-sight measurements.
Even though maximum ratio combining still attains a noticeable increase
in the fading figure, it will have minor impact on the performance because
m = 18, say, is favourable enough to almost disregard from the fading effects
altogether.

The more severe the fading is, the more we need diversity techniques to
alleviate the negative effects on transmission energy consumption. Now it
seems, both from theoretical arguments and our measurements, that the po-
larisation diversity improves as the channel variability increases; the richer
the scattering is, the more severe the fading will be, and the better the po-
larisation diversity becomes. We deem it highly likely that rich scattering
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causing severe (Rayleigh) fading also erases the correlation between the po-
larisations; otherwise we must face an environment with the curious property
that all reflections are almost identical for the two polarisations. Polarisation
diversity is available when it is most needed.

3.5 Conclusions

Based on our channel measurements carried out in forest and office envi-
ronments, under line-of-sight and non-line-of-sight conditions, we draw the
following conclusions.

• The Nakagami-m model is preferable to the more limited Rayleigh
model; our data support that significant deviations do occur in prac-
tice.11

• Polarisation branches are uncorrelated, a fact that encourages the con-
sideration of polarisation diversity as a means of saving transmission
energy in fading environments. Additionally, the measurements sup-
port the theory that the more severe the fading is, the smaller are the
correlations between branches.

• Polarisation branches can be of considerably different quality. This
opens up for simple schemes relying on branch selection instead of
complicated coherent combining. We discuss diversity schemes further
in Chapter 5.

3.6 Future work

We have studied two relevant environments, a forest and an office area, but
good channel characterisations for other sensor network environments would
be informative and useful. Our planned future work is broadly the following:

1. Investigate other environments: urban areas, traffic related scenarios,
water surfaces, open fields, etc.

2. Study temporal characteristics in more detail.

3. Combine propagation loss, shadowing and fading in joint estimation.
Perform proper model selection on a larger set of candidate models.

11A future task is to perform a thorough model-selection analysis based on more data
and explicit temporal/spatial channel modelling.





Chapter 4
Power Control and Rate Adaption

IN this chapter we investigate the impact of circuit processing energy on
wireless node-to-node (point-to-point) communication. Although one must

eventually consider the whole network aspect of a wireless sensor network,
he who has a good understanding of energy efficient node-to-node communi-
cation will be in a better position to address the network issues than he who
does not. For this reason we start with a slightly idealised energy optimisa-
tion based on the Shannon capacity limit and then move on to study transmit
power control under feedback costs, (adaptive) error correcting codes and
adaptive modulation. In all cases it is the trade-off between transmission
and processing costs that is in focus.

We find that some existing radios would loose, or at least not benefit,
energy-wise from the use of transmit power control and/or error correcting
codes. Sensor nodes equipped with these radios could very well be set to
use fixed output power and uncoded data transmissions. The reason is that
these nodes’ processing energy costs dominate and unless the transmission-
to-total-processing ratio ρ′, see (2.8), can exceed 1/3, their total energy con-
sumption will, in spite of reduced transmission energy, increase if the men-
tioned techniques are employed. However, there are radios that do benefit
from power control and coding, at least in the upper part of their trans-
mit power range where ρ′ > 0.4. Here, the energy savings increase fairly
rapidly and when the transmission energy becomes dominant, ρ′ > 1, the
benefits from power control and coding are clear. Our general recommenda-
tion is then to use a low-feedback, coarse grained power control scheme to
counter slow fading, in combination with simple, possibly slowly adaptive,
block codes to counter noise and possibly fast fading channels.

93
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Considering adaptive quadrature amplitude modulation (QAM), which
offers the possibility to reduce transmission energy costs by faster packet
transmissions, we find that there are indeed large savings to be made for
transmission-to-total-processing ratios below 1/10. However, we show that
the complex, processing intensive, hardware platform required for adaptive
QAM outweighs the attainable benefits; the initial processing energy – which
can be reduced by adaptive QAM – is too large compared to simpler radio
architectures.

4.1 Shannon-limit rate optimisation

Consider a radio transmission taking place with a transmission energy per bit
ET,0 J, and at a spectral efficiency of C0 bits/s/Hz. Assume further that the
spectral efficiency can, at the cost of increased transmit energy per bit, be
increased so that the transmission time per bit is decreased (and vice versa,
that the spectral efficiency can be decreased to save transmission energy per
bit, but at the cost of increased transmission time per bit). In order to find
the energy-optimal tradeoff between transmission energy and transmission
time, which translates to processing energy, through adaption of the spectral
efficiency we must know how the energy and time scales with the spectral
efficiency. Let us for this purpose use the Shannon capacity limit for static
Gaussian channels.

The lowest achievable received energy per bit that can guarantee error-
free reception at a given spectral efficiency Ce is for the static Gaussian
channel given by the Shannon limit (Shannon, 1948a)1

Erec = N0
2Ce − 1

Ce
. (4.1)

Here N0 is the noise power spectral density and Ce ≡ C/W , where C is
the Shannon rate in bits per second and W is the channel bandwidth in
hertz (Hz). Consequently, the minimum energy per bit in (4.1) is always
increasing with the spectral efficiency Ce and the “traditional” wisdom is
that systems are most energy-efficient at very low spectral efficiency; the
limit is Erec → ln(2)N0 when Ce → 0. This limit can be approached by
reducing the bit rate for a given bandwidth – coding over time – and/or by
increasing the bandwidth for a given bit rate – coding over frequency. But
the conclusion that low spectral efficiency saves energy is not generally valid

1See also (2.113) on page 71; by replacing the signal-to-noise ratio according to γP =
ErecC/(N0W ) we arrive at the present form when we solve for C/W .
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for our present problem in which the radio circuits’ processing energy is not
negligible.2

The idealised energy model

Consider now an idealised node radio system which can communicate at
the Shannon-limit energy levels in (4.1), assuming that communication can
be undertaken at any spectral efficiency Ce ≥ 0, but is constrained to a
fixed bandwidth W . It has an ideal power amplifier which has the same
efficiency at all output power levels; its degradation exponent in (2.14) is
g = 1. Consequently, the total transmission energy per bit is by the use of
(2.14)

ET = K (Erec)
1/g ,

= [g = 1]

= KErec,

(4.2)

where K is a propagation and system dependent constant which will cancel
out in the following calculations. By combining the Shannon limit (4.1)
and (4.2) we can relate the initial operating point (ET,0, C0) to any other
operating point (ET, Ce) as

ET = ET,0
C0

2C0 − 1

2Ce − 1

Ce
. (4.3)

The expression in (4.3) shows how the transmission energy cost per bit scales
with the spectral efficiency, and we can quantitatively assess the change in
going from C0 to Ce.

The radio circuitry draws a constant supply current; it has constant
processing power consumption PRP. Under the assumption that it can per-
form ideal start-up and shut-down, from and to an ideal sleep mode, it will
consume a processing energy per-bit which scales linearly with the per bit
transmit duration Tbit; ERP = PRPTbit. In turn the bit duration is inversely
proportional to the rate C = WCe, and due to the fixed bandwidth W we
can express the processing energy

ERP = ERP,0
C0

Ce
, (4.4)

2Verdu (2002) has in addition shown that conclusions drawn from the infinite band-
width limit can be misguided for finite bandwidths, even when processing energy is not
included: “Indeed,... low spectral efficiency does not imply disregard for the bandwidth
required by the system”. Consequently, the infinite bandwidth limit should be used with
some care.
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where ERP,0 is the per-bit processing energy at efficiency C0.
We have here a typical trade-off situation between the transmission en-

ergy (4.3), which increases with Ce, and the processing energy (4.4), which
decreases with Ce. The total per-bit energy is

Etot = ERP + ET

= ERP,0
C0

Ce
+ ET,0

C0

2C0 − 1

2Ce − 1

Ce
.

(4.5)

The absolute values of ERP and ERP,0 will not determine the energy-optimal
spectral efficiency, it is their relative size that is important. Therefore, to
study the transmission-processing tradeoff, the use of the transmission-to-
processing ratio is adequate and simplifies the analysis to one parameter.
Rewriting (4.5) by the use of the transmission-to-total-processing ratio ρ′ =
ET/(EPt + EPt) defined in (2.8) on page 21, we obtain

Ĕtot =
C0

Ce
+ ρ′0

C0

2C0 − 1

2Ce − 1

Ce
. (4.6)

Here, the breve symbol Ĕtot shows that we have normalised the expression,
this time with respect to ERP,0. Adjusting the spectral efficiency from C0

to Ce results in a new transmission-to-total-processing ratio ρ′e, which from
(4.6) is found to be

ρ′e = ρ′0
2Ce − 1

2C0 − 1
. (4.7)

Observe that an increase in the spectral efficiency increases the transmission-
to-total-processing ratio through decreased processing energy, not only through
increased transmission energy.

4.1.1 The optimum transmission-processing tradeoff

Let us now optimise the spectral efficiency Ce with respect to the total energy
per bit in (4.6).

Lemma 4.1 The energy-optimal spectral efficiency Copt for a system whose
energy consumption is described by (4.6) is

Copt =
1

ln(2)
[1 +WL (ξ)] , (4.8)

where

ξ =
2C0 − 1− ρ′0

eρ′0
(4.9)
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and WL(·) is the Lambert W function.3

Proof: See Appendix 4.A.

Depending on the initial transmission-to-total-processing ratio ρ′0, the op-
timum trade-off can be achieved either by an increase or a decrease in the
spectral efficiency from C0.

• When ρ′ → ∞, the Lambert W function’s argument in (4.8), ξ →
−1/e, and WL(ξ) → −1. Therefore, Copt → 0.

• When ρ′ → 0, ξ → ∞ and the optimum spectral efficiency C0 grows
without bound.

Lemma 4.1 provides the optimum spectral efficiency Copt as a function of
the initial operating point (ρ′0, C0). A change from C0 to Copt will however
affect also the transmission-to-total-processing ratio as described by (4.7).

Theorem 4.1 Let the transmission-to-total-processing ratio ρ′ be defined as
in (2.8) on page 21. Energy-wise rate-optimisation of a communication
system with a total energy consumption per bit given by (4.5) results in a
transmission-to-total-processing ratio

ρ′opt =
2Copt − 1

ln(2)Copt2Copt − (2Copt − 1)
, (4.10)

with the solution for the optimum spectral efficiency

Copt =
1

ln(2)

[
1 +

1

ρ′opt

+WL (ζ)

]
. (4.11)

Here,

ζ = −
(
1 +

1

ρ′opt

)
e
−

(
1+ 1

ρ′opt

)
. (4.12)

Proof: See Appendix 4.B.

The results in Theorem 4.1 define a curve in the (ρ′opt, Copt) plane that an
energy optimal transmission scheme must follow. Unfortunately, the expres-
sions do not lend themselves to easy interpretation but we can gain insight
into the general behaviour by the following corollary.

3The Lambert W function is described by Corless et al. (1996) and it satisfies x =
WL(x) exp(WL(x)). For x > −1/e the function is monotonic, increasing, real-valued and
WL(x) > −1. The function is sometimes referred to as the Product-Log function or the
Omega function.
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Corollary 4.1 An energy-wise rate-optimised system is bounded from below
and from above by

1

ln(2)
≤ ρ′optCopt ≤

2

ln(2)
. (4.13)

Proof: See Appendix 4.C.

Corollary 4.1 shows that the optimum spectral efficiency is approximately
inversely proportional to the transmission-to-total-processing ratio.4

In Figure 4.1 we show curves corresponding to Lemma 4.1, Theorem 4.1
and Corollary 4.1. We note that small transmission-to-total-processing ratios
ρ′opt < 0.1 correspond to excessively high spectral efficiencies Copt > 15. This
indicates that the optimum point of operation is in practice out of reach if
ρ′opt < 0.1. At the other end of low spectral efficiencies Copt < 0.1, we see
that ρ′opt > 28; more than 96 percent of the energy must be transmission
energy. The traditional wisdom that low spectral efficiency results in the
smallest energy per bit is motivated only when ρ′opt → ∞.

A guiding rule of thumb. In spite of the idealising assumptions that
go into the current calculation, Corollary 4.1 suggest that the simple rule of
thumb

ρ′optCopt ≈ 2 (4.14)

can reveal when systems are operating far from the optimum balance, for
instance by the use of excessively powerful error correcting codes. We stress
that (4.14) is a rule of thumb, not a result that dictates what is a good and
a bad design.

The Transmission-to-Processing Concentration Effect. By the use
of (4.10) in Theorem 4.1 we find that the range Copt ∈ [0.5, 6] corresponds
to the range ρ′opt ∈ [0.3, 5.5]; the range of common spectral efficiencies cor-
respond to a fairly narrow range of transmission-to-processing ratios. Fig-
ure 4.1 shows that as soon as either processing or transmission costs become
dominant, the optimisation will tend to balance them by adjusting the spec-
tral efficiency; in the given examples we go from ρ′ = 10 to ρ′ = 2.9, and
from ρ′ = 0.01 to ρ′ = 0.28. This concentration effect is something we will

4It should be observed that by optimising the transmission rate according to (4.6) we
have not found the capacity per unit energy as achieved by maximising mutual information
under a cost constraint (Verdu, 2002). Rather, we use the Shannon limit – which is the
capacity per unit time – as an analytical tool to gain insights into the transmission-
processing trade-offs we are currently interested in.



Chapter 4. Power Control and Rate Adaption 99

2

4

6

8

10

12
Spectral efficiency Ce

0.01 0.1 1.0 10
Transmission-to-total-processing ratio ρ’0

Copt

Copt
ρopt ρopt

ρ'0 = 0.01

C0 = 2

ρ'0 = 10

C0 = 2

C
0 = 2

C
0 = 6

(4
.1

0
)

(4.8)

(4.8)

(4
.1

3
)

(4
.1

3
)

Figure 4.1: The blue solid curves correspond to (4.8) and show the optimum
spectral efficiency Copt for two different initial efficiencies C0 = 2 and C0 =
6. The red solid curve shows the optimum transmission-processing trade-off
given by (4.10). It is accompanied by the upper and lower limits in (4.13).
Two examples are given. First, a system operating with ρ′0 = 0.01 and C0 =
2 is severely unbalanced towards excessive processing costs. Following the
dash-dotted curve on the left upwards until it intersects (4.8), we find the
optimum rate Copt = 6.4 on the vertical axis. The resulting transmission-
to-total processing ratio ρ′opt is obtained from the red solid line; ρ′opt = 0.28.
Second, a system with ρ′0 = 10 operates with excessive transmission costs
and the optimisation results in Copt = 0.9 and ρ′opt = 2.9.

observe repeatedly in this thesis: as soon as one type of cost starts to dom-
inate there will be a more energy-efficient strategy that equalises the costs
to some extent.5

5There are of course conceivable exceptions to this rule. For example, if ρ′ is very large
and Ce < Copt, the result is an increased ρ′. These cases are however so extreme that
they are unlikely to be encountered in practice.
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4.1.2 Distance to the Shannon limit

An apparent objection to the above optimisation based on the Shannon limit
is that no practical systems will operate at this limit. We can however include
a distance υ to the limit and replace ρ′0 in (4.6) with ρ′0,υ = υρ′0. In this
way we retain the qualitative features of the rate optimisation as long as the
minimum received energy per bit Erec scales like the Shannon limit in (4.1).

Fading channels

The optimisation results we have now presented applies to the stationary
additive white Gaussian noise channel, but let us now briefly discuss the
impact of time-variability.

In many sensor network scenarios a quasi-static, or block fading, model
is appropriate because of the supposedly low activity (duty cycle) of fixed
sensor nodes. For such scenarios we resort to the concept of outage capacity
(Goldsmith, 2005). The outage spectral efficiency Cout can be achieved with
a given probability 1− Pout, where Pout is the outage probability. For the
Nakagami-m channel we can use (2.114) with γ = Erec/N0 and C ′ = Cout to
obtain

Pout = 1−
Γ
(
m,mE−1

recN0
2Cout−1

Cout

)
Γ(m)

. (4.15)

There is no analytic solution for Cout, but let us reason as follows. Define

X ≡ E−1
recN0

2Cout − 1

Cout
, (4.16)

and rewrite (4.15)

Pout = 1− Γ (m,mX)

Γ(m)
. (4.17)

Solving (4.17) for X, we see that the solution can only depend on m and
Pout,

X = f(Pout,m). (4.18)

Now we conclude from (4.16) and (4.18) that the minimum received energy
per bit Erec is proportional to its static channel counterpart in (4.1),

Erec = f(Pout,m)N0
2Cout − 1

Cout
. (4.19)

The previous rate optimisation results for the static channel are thus appli-
cable also to the quasi-static fading channel. The modification lies in that
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the distance υ = f(Pout,m) to the Shannon limit must be accounted for in
(4.6).

4.1.3 Practical relevance of idealised rate optimisation

On the one hand, the above calculations highlight the importance of the
transmission-processing trade-off and shows the possible impact of trans-
mission optimisation. They show that if spectral efficiency is decreased,
supposedly to save transmission energy, the penalty in terms of circuit pro-
cessing costs can be large; systems operating at very low spectral efficiencies
should have very small processing costs. This confirms the intuition that
low spectral efficiency is beneficial energy-wise only when the transmission
energy dominates, typically at large distances.

On the other hand, the model ignores several real-world considerations
needed for a fair assessment. The above results share with Shannon’s the-
ory the attractive feature of independence from practical implementation
details, but this is presently also the limitation of the model; implementa-
tion details will matter. It is some of these practical details that the rest of
this chapter concerns. First of all, the benefits from optimised transmission
rates presupposes the use of power control, that is a transmitter adapting
its output power level to the current conditions. This adaption requires
feedback and we study that particular transmission-processing trade-off in
Section 4.2. Following that study, we turn to error correcting codes and their
possible energy savings in Section 4.3. Observe that the introduction of such
codes can only decrease the rate. The final topic is adaptive modulation in
Section 4.4, where we focus on quadrature amplitude modulation (QAM).

4.2 Power control or fixed link margins

Considering the energy efficiency of wireless transmissions, one of the first
things that comes to mind is that the transmission power should be adjusted
to the present conditions so that no extraneous energy is radiated in vain. It
seems obvious that if sensor nodes adjust their transmit power level to the
current channel conditions, instead of applying a fixed link safety margin,
they will save energy. We must however include the energy cost of the neces-
sary feedback from the receiver node, and it turns out that it can in fact be
less energy-consuming to apply a fixed link margin than to perform power
control. Johansson et al. (2006) analyse fast and slow power control over fad-
ing channels and find that fixed margins are preferable over the propagation
losses expected in most wireless sensor networks. Here we extend the analysis
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and provide insights obtained by our use of the transmission-to-processing
ratio ρ.

Channel inversion. Our analysis is carried out for unconstrained and
constrained channel inversion, that is when the transmitter adapts its out-
put power with the aim of a constant signal-to-noise ratio at the receiver.
Channel inversion relies on the feedback of accurate channel state informa-
tion, which under our assumption of a single-tap channel amounts to the
channel power gain x. From a channel-capacity viewpoint, the channel in-
version scheme is known to be sub-optimal, and the unconstrained version
can even result in zero capacity for Rayleigh fading. On the other hand, the
results depend strongly on the degree of fading and it is also seen that so-
called truncated schemes perform well even in Rayleigh fading (Goldsmith
and Varaiya, 1997). As we are here only concerned with power adaptiv-
ity, no adaptive modulation or coding is assumed, channel inversion is the
straight-forward alternative.

Nakagami-m fading, DBPSK and bit error rates. We here concen-
trate on the fading effects xf for which we have assigned a gamma probabil-
ity distribution through our Nakagami fading model, see Assumption 2.6 on
page 29. We assume that nothing but the channel varies6 and can therefore
express the received signal-to-noise ratio per bit

γrec = KxfErad, (4.20)

where K is a system and propagation dependent constant whose exact value
is of no present interest as it will cancel in the subsequent calculations. The
channel fading gain xf is assigned the distribution

p(xf |m, I) =
mm

Γ(m)
xm−1

f e−mxf , (4.21)

where m is the Nakagami-m fading figure. For simplicity we will assume,
when it is required, that differential binary phase shift keying (DBPSK) is
used.7

6It would in principle be straightforward to include all types of variations, not only the
fading. Variations in interference and noise at the receiver are examples of phenomena
that we could include.

7Apart from a constant offset in signal-to-noise ratio per bit, the error behaviour – bit
error or outage – is very similar for most modulation schemes. The offset plays a minor
role as we are using relative measures such as the transmission-to-processing ratio; it is
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4.2.1 Fixed link margin approach

If we adopt the link margin (LM) approach, in which the smallest fixed
output power that achieves the given performance criteria is chosen, the
receiver will see a signal-to-noise ratio per bit γLM that follows the fading
gain xf . Due to the channel variations the average signal-to-noise ratio per
bit γLM must be larger than for a static channel.

Definition 4.1 The link (fade) margin ML is defined with respect to a static
Gaussian channel,

ML ≡ ELM

Esta
=

γLM

γsta
, (4.22)

where γLM and γsta are the signal-to-noise ratios per bit required to meet
specified performance goals for fading and static channels respectively.8

The size of the link margin is determined by the degree of fading and the
performance requirements. To exemplify, consider differential binary phase
shift keying for which the average bit error rates in static and Nakagami-
m fading channels are given by (2.106) and (2.107) respectively. The link
margin required for a bit error rate B becomes

ML,DBPSK = m
1− (2B)−1/m

ln(2B)
, (4.23)

which is strongly affected by the values of B and the fading figure m; deep
and frequent fading dips require a large safety margin if errors are to be
avoided. For instance, B = 10−3 and m = 2 results in ML,DBPSK = 6.87,
while B = 10−6 and m = 1 results in ML,DBPSK = 36.2 · 103.

4.2.2 Ideal channel inversion through power control

Let us for a moment pretend that the transmitter has no power limitation,
which in our present notation means that the radiated energy per bit Erad

has no upper bound. Given that the transmitter also has perfect channel
state information, that is to say it knows the exact value of the fading gain
xf at each instant, it can apply the ideal channel inversion (ICI) scheme

EICI =
EICI,0

xf
(4.24)

the error slope that matters the most. For the quantitative analysis we use the criterion
of average bit error rate, but point out the connection to the combined use of outage
probability and bit error rate.

8We here refer only to the radiated energies per bit Erad,LM and Erad,sta by the simplified
notation ELM and Esta respectively.
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to provide the receiver with a constant signal-to-noise ratio γICI. Here EICI,0

is a constant which is to be chosen to satisfy the performance requirement; a
constant received signal-to-noise ratio per bit γICI = γsta which results in the
targeted bit error rate B. In the long-term energy perspective it is however
the average energy per bit that is of interest.

Theorem 4.2 Consider the ideal channel inversion scheme (4.24). The av-
erage radiated energy per bit, E ICI, is for Nakagami-m channel inversion
given by

E ICI =
m

m − 1
Esta, m > 1, (4.25)

where Esta is the energy per bit required for a static channel. For all fading
figures m ≤ 1 the average energy is infinite.

Proof: See Appendix 4.D.

Corollary 4.2 The radiated-energy gain GICI relative to the fixed link mar-
gin scheme is for ideal channel inversion

GICI ≡
ELM

E ICI

=
m − 1

m
ML. (4.26)

Proof: The result in (4.26) follows readily from Theorem 4.2 and Defi-
nition 4.1.

Figure 4.2 shows the energy gain GICI for differential binary phase shift key-
ing. It is evident that large gains are achievable by avoiding the waste of
energy that a fixed link margin scheme causes during good channel condi-
tions. However, we also see that the severest conditions are too costly to
invert and the gain decreases to zero for small m.

The problem of infinite average output power in the Rayleigh case, evi-
denced in Theorem 4.2, is well recognised in the literature, see for instance
the work by Goldsmith and Varaiya (1997) and references therein. Loosely
speaking, the probability that xf = 0 is not small enough in the Rayleigh
case to let us disregard from that possibility, and since it takes (mathemat-
ically) an infinite amount of power to invert a channel zero we also face an
infinite average power. There exists an entirely practical and unavoidable
radio limitation which alleviates our infinite-power concerns: All radios have
a maximum output power level and the infinite peaks are just mathematical
artifacts.
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Figure 4.2: Transmission energy gain GICI achieved by the ideal inversion
scheme for differential binary phase shift keying. Over a Rayleigh fading
channel, m = 1, the transmitter spends so much effort inverting the deepest
fading deeps that the gain becomes zero (−∞ dB). The large difference
between the two bit error rates is due to the size of the link margin ML

which is much larger for B = 10−6 than for B = 10−3.

4.2.3 Power-limited (truncated) channel inversion

Although the obvious reason to invoke a power limitation is that it is prac-
tically inevitable, one should note that the limitation is actually beneficial
in the energy context we are now considering. The expected energy cost of
inverting a Rayleigh channel is infinite, but since the link margin approach
can meet the presently used performance requirement at a constant and fi-
nite energy per bit one must conclude that it can be better to leave some
fluctuations unconsidered – even at the price of wasting some energy when
the channel is good.9

Given that the transmitter manages a maximum radiated energy per bit
9This resembles the truncated channel inversion considered by Goldsmith and Varaiya

(1997) in their channel capacity analysis; no transmissions take place below a certain
channel threshold and enough energy is thereby saved to make the capacity in Rayleigh
fading non-zero, which it otherwise is (under the assumption of receiver channel state
information only).
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Emax, which corresponds to its maximum output power, we obtain a power-
limited channel inversion (CI) scheme that operates according to the rule

ECI = min

{
Emax,

ECI,0

xf

}
, (4.27)

where Esta ≤ ECI,0 ≤ ELM is a constant that must be chosen to satisfy the
performance requirement. Naturally, if the comparison with the link margin
approach is to be meaningful we require that Emax ≥ ELM.

Lemma 4.3 Let the bit error rate over a static channel be denoted Bsta(γ)
where γ is the received signal-to-noise ratio per bit. Assuming perfect receiver
channel state information, the transmission constant ECI,0 in the truncated
channel inversion scheme (4.27) is found by solving

BCI = P

(
xf ≥

ECI,0

Emax
|I
)

Bsta

(
γLM

ECI,0

ELM

)

+

γLM

ECI,0
ELM∫

0

p

(
γ|γ = γLM

Emax

ELM
xf , I

)
Bsta(γ)dγ

(4.28)

for ECI,0. Here, γLM and ELM respectively denote the received average signal-
to-noise ratio per bit and the radiated energy per bit required to achieve the
bit error rate BLM = BCI with a fixed link margin (LM). For differential
binary phase shift keying in Nakagami-m fading the average bit error rate is
given by

BCI =
Γ
(
m,m

ECI,0

Emax

)
Γ (m)

· 1
2
e
−

ECI,0
ELM

γLM

+
Γ (m)− Γ

(
m, ECI,0

(
m
Emax

+ γLM
ELM

))
Γ (m)

· 1
2

(
mELM

mELM + EmaxγLM

)m

.

(4.29)

Proof: See Appendix 4.E.

The average bit error rate BCI in (4.28) consists of two contributions. First,
the static-channel bit error rate weighted by the probability that the channel
can be inverted. Second, the bit error rate averaged over the remaining
channel fluctuations.
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Theorem 4.3 Consider the power limited (truncated) channel inversion in
(4.27). The average radiated energy per bit, ECI, required for power limited
Nakagami-m channel inversion is given by

ECI = Emax

Γ (m)− Γ
(
m,m

ECI,0

Emax

)
Γ (m)

+mECI,0

Γ
(
m − 1,m

ECI,0

Emax

)
Γ (m)

, (4.30)

where ECI,0 is determined by solving (4.28) for Nakagami-m fading (or by
solving (4.29) if differential binary phase shift keying is used).

Proof: See Appendix 4.F.

The use of truncated channel inversion will result in a reduction in the av-
erage radiated energy per bit, with respect to the fixed link margin (LM)
approach. How large the reduction is is shown by the following Corollary.

Corollary 4.3 The achieved radiated-energy gain, with respect to a fixed
link margin (LM), is for truncated channel inversion

GCI ≡
ELM

ECI

=
ELM

Emax

⎛⎝Γ (m)− Γ
(
m,m

ECI,0

Emax

)
Γ (m)

+m
ECI,0

Emax

Γ
(
m − 1,m

ECI,0

Emax

)
Γ (m)

⎞⎠−1

.

(4.31)

Proof: Straightforward from Theorem 4.3.

The gain in (4.31) is difficult to interpret due to the nonlinear and non-
trivial influence of the modulation and bit error rate on the ECI,0 parameter.
Essentially, the result of power-limited channel inversion is a received signal-
to-noise ratio which is mostly constant and slightly larger than for a com-
pletely static channel in order to compensate for the occasional un-invertible
fading dip. However, the remaining dips are shallower than for the fixed link
margin approach. In Figure 4.3 we illustrate the result of truncated channel
inversion on a measured channel.

An outage criterion amounts to truncation

For some applications it may be more reasonable to use an outage criterion
accepting a certain probability for lost packets, given that the channel oth-
erwise is good enough to support successful packet reception. Referring to
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Figure 4.3: Power-limited (truncated) channel inversion. Observe that the
received signal-to-noise ratio per bit is larger than for the static channel,
even during the periods the transmitter manages to keep it constant. This
is to compensate for the residual fading when the transmitter saturates its
power amplifier. By contrast to the link margin scheme, the power control
scheme utilises good channel conditions to save energy; it only exceeds the
link margin level during the deepest fades.

Figure 4.3, we see that since an outage criterion accepts a certain amount of
fading dips that cause packet loss it will not force the transmitter to invert
all dips. Consequently, the outage criterion will amount to a certain level
of transmit power limitation, or truncation, which is not imposed by the
maximum output power. Combining outage and bit error rate criteria for
the fading channel thus corresponds to a an artificial output power limit and
a bit error rate criterion.
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4.2.4 Energy saving through truncated channel inversion

The price paid for adapting the transmission power is the cost of feeding
back channel state information to the transmitter. We omit the details re-
garding the exact procedure and employ the simple model used by Johansson
et al. (2006) which collects all additional overhead in r, the fraction of extra
overhead transmissions required. Put differently, the impact of the feedback
overhead is modelled to be energy-wise equivalent to sending 1 + r bits per
bit sent in the fixed power scheme.10 The numerical results we present here
pertain to differential binary phase shift keying, but we believe that they are
fairly general in applicability.

The power control scheme saves a factor GCI in radiated energy per bit
Erad, see (4.31), but due to the degradation in amplifier efficiency the actual
gain in transmission energy ET is less. According to the Mikami model in
(2.14), we have

ET,CI =
ET,LM

G
1/g
CI

, (4.32)

where g > 1 is the degradation exponent. Channel inversion (CI) will save
a fraction w of energy with respect to the link margin (LM) approach;

w =
Etot,LM − Etot,CI

Etot,LM

= 1−
(1 + r)

(
ERP +

ET,LM

G
1/g
CI

)
ERP + ET,LM

= 1−
(1 + r)

(
1 +

ρ′LM

G
1/g
CI

)
1 + ρ′LM

=

ρ′LM

(
1− 1+r

G
1/g
CI

)
− r

1 + ρ′LM

,

(4.33)

where ERP = EPt + EPr is the total processing energy per bit, see (2.5), and
ρ′LM is the transmission-to-total-processing ratio, see (2.8). As we previously

10This simplified model neglects that, in addition to transmission and reception of extra
bits, there will be energy expended by node circuitry, most notably local oscillators and
frequency synthesisers, during the switches between receive and transmit modes. Espe-
cially if the adaption must be conducted on a shorter time scale than the packet duration.
Moreover there will be processing costs related to the adaption. We lump all this into an
equivalent fraction r of overhead. Johansson et al. (2006) assumed two-way communica-
tion and thereby simplified the analysis somewhat.
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mentioned, the size of the gain GCI is determined by the degree of fading and
the performance requirement; the harder the conditions and requirements,
the larger the gain. Taking our uncertainty regarding the fading figure m
into account, we take the expected energy saving

E(w|B, g, I) =

ρ′LM

(
1− (1 + r)E

(
1

G
1/g
CI

∣∣∣B, g, I

))
− r

1 + ρ′LM

, (4.34)

as our mean-square optimal prediction given a target bit error rate B and
an amplifier degradation exponent g. The expectation is presently found
by (numerical) averaging over our probability distribution for m, see (2.85).
This prior for m has the median mmed = 1.88, the 10th percentile m10 = 1.10
and the 90th percentile m90 = 8.83. By the use of these values and (4.33)
we find the corresponding median and percentiles for w.

In Figure 4.4 and Figure 4.5 we show the saving w for target bit error rates
B = 10−3 and B = 10−6 respectively, together with examples of maximum
transmission-to-total-processing ratios from Section 2.2.2. It is evident that
the bit error rate has significant impact on the outcome. This also holds
true for the feedback fraction r; if kept small the benefits from power control
increase.

Maximum allowed feedback fraction

Let us now study the maximum allowable feedback fraction r, since this
parameter plays a key role in the present trade-off between transmission
energy and processing energy. For ease of exposition we focus on the ex-
pected energy saving in (4.34), and omit the percentiles for w. To attain
the expected energy saving E(w|B, g, I) = w we must achieve the expected

radiated-energy gain G
−1/g
CI = E(G

−1/g
CI |B, g, I) using a feedback fraction of

at most

rmax =

ρ′LM

(
1− w − G

−1/g
CI

)
− w

1 + ρ′LMG
−1/g
CI

, (4.35)

found by solving (4.34) for r. We plot the feedback fraction together with
node characteristics in Figure 4.6. Note the rapid increase in rmax with ρ′LM;
substantial feedback is allowed for ρ′LM > 1, that is when transmission costs
starts dominating processing costs.
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Figure 4.4: Saved fraction w of energy for a target bit error rate B = 10−3.
The upper curve of each type (solid, dashed, dash-dotted) corresponds to
a feedback fraction r = 0.01, while the lower curve corresponds to r = 0.1.
It is assumed that Erad,max = 2ELM so that truncated inversion is feasible –
see the dark grey area of the bars (described closer in item 1. on page 111)
– and that g = 2.

Observations

From Figure 4.4, Figure 4.5 and Figure 4.6 we observe the following:

1. It is required that Erad,max > Erad,LM for the inversion scheme to work;
we have used Erad,max = 2Erad,LM in our calculations. Therefore the
node specific maximum transmission-to-total-processing ratios ρ′max

are not fully applicable. They should be lowered by a factor 21/g = 1.41
to be representative, (we have indicated this as dark grey bars in the
figures).

2. The saving w increases with the transmission-to-processing ratio, but
so does the uncertainty regarding this gain (stemming from the un-
certainty regarding the degree of fading). At any rate, it seems that
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Figure 4.5: Saved fraction w of energy for a target bit error rate B = 10−6.
The upper curve of each type (solid, dashed, dash-dotted) corresponds to
a feedback fraction r = 0.01, while the lower curve corresponds to r = 0.1.
It is assumed that Erad,max = 2ELM so that truncated inversion is feasible –
see the dark grey area of the bars (described closer in item 1. on page 111)
– and that g = 2.

power control becomes strongly motivated for ρ′LM > 0.25 if B = 10−3,
and for ρ′LM > 0.15 if B = 10−6.

3. If we want to save energy – not just break even – we see a significant
threshold effect in Figure 4.6. No feedback should be used below a
threshold transmission-to-total-processing ratio. Above the threshold
the allowed amount of feedback increases quite rapidly and r = 0.1 is
no problem at ρ′LM = 1.

4. Not all exemplified radios would benefit from power control with cer-
tainty, although it goes without saying that the CC1000 would if op-
erating close to its ρ′max. The likely energy savings for the other radios
are somewhat more modest but still positive for the most part.
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Figure 4.6: Maximum feedback fraction allowed according to (4.35) for
expected energy savings of w = 0 and w = 0.1 respectively.

5. The maximum energy loss from power control is simply r; in case no
transmission gain is attainable we spend the overhead in vain.

4.2.5 Slow and fast power control

If the channel fading is quasi-static or slow, see Definition 2.1 on page 30,
the power control overhead can easily be incorporated into an existing packet
structure. How large r becomes is of course highly dependent on the lengths
of the packets, but since some applications may use very short packets – for
instance reporting a single sensor reading – the power control information
can be of non-negligible size even for slow and quasi-static channels. The
use of fast power control introduces significantly larger amounts of overhead
due to the need to shorten packets to allow the transmitter to follow the
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fading. Then not only power control bits are introduced, but also the cost
of transmit-receive switching and increased synchronisation overhead.

4.2.6 Summary power control

We believe that power control should be employed under the following con-
ditions:

• Only invert slow channel variations so that a small overhead cost can
be achieved.

• The radios’ maximum transmission-to-processing ratio ρ′max > 0.3.11

It will probably suffice with a coarse power control scheme that operates with
few feedback bits – maybe just a single bit – and a few power level settings
(this amounts to a combination of link margins and coarse power control).
The important thing is to avoid excessive power levels during good channel
conditions.

4.3 Error correcting codes in static channels

The use of error correcting codes can be viewed as a limited variant of rate
adaption in the sense that we can only trade increased circuit processing
energy for reduced transmission energy. Assuming that the system is initially
uncoded, error correcting codes can reduce the transmit energy, not the
processing energy.

Howard et al. (2006) have studied the energy consumption of coding and
decoding, and compared them to the transmission costs. They conclude
that codes save energy already at very short distances, but they have not ac-
counted for the increase in transmission time, only the energy consumed by
the coder and decoder. Similarly, Zhong et al. (2005) neglect the increased
transmission time when they propose an asymmetric one-hop network struc-
ture based on powerful error correcting codes. Their idea is to exploit the
fact that the encoding process is much less energy consuming than the de-
coding process and therefore use powerful codes when transmitting from

11We have hereby revealed a “hidden assumption” in our own published study where
we did not work with transmission-to-processing ratios explicitly (Johansson et al., 2006).
However, we implicitly assumed – by the use of energy consumption numbers published
by others – that the maximum transmission-to-processing ratio was considerably smaller
than one. In the case then considered, our conclusion had to be that power control was
inefficient energy wise.
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the simple sensor nodes to the central node.12 A. Chandrakasan has led
research which includes error correcting codes and his group has suggested
the concept of “energy-agile coding” which amounts to adapting the code
rate to achieve the lowest overall energy consumption; see the work by Min
et al. (2002) and Shih et al. (2004). Their study of error correcting codes is
based on convolutional codes at a fixed propagation loss of 70 dB and slow
Rayleigh fading, and their conclusion is that coding – more precisely a rate
3/4 convolutional code – in this case should be applied if the target bit error
rate is below B = 10−5. The special case is illustrative but lacks generality
regarding the trade-off between transmission energy and processing energy.
But more importantly, the calculation does not include the receiver’s total
processing costs but only the decoding circuitry.13

Sartipi and Fekri (2004) include processing costs for both the coding and
the increased transmission time in their study, but use a fixed transmission-
to-processing ratio when they compare conventional BCH codes (Bose, Chaud-
huri and Hocquenghem) with low density parity check codes. Zorzi and Rao
(2004) and Tralli (2005) both study combined multi-hop and error correcting
codes – which we will do in Chapter 6 – and it is not possible to isolate the
possible energy gains from the coding in these studies.

We will in this section study error correcting codes with special focus on
the transmission-to-total-processing ratio ρ′ to gain insights into the funda-
mental energy trade-off.

4.3.1 Energy consumption for coded transmissions

Let us here sort out how the use of error correcting codes affects the to-
tal energy consumption, consisting of transmission energy, radio processing
energy and code processing energy. By the use of an error correcting code
with

code rate Rc ≤ 1 (4.36)

and
coding gain Gc ≡

γu

γc
, (4.37)

12Zhong et al. (2005) have focused on the possibility to implement a one-hop network
structure and compared it with a multihop structure. The possible energy savings due to
coding has not been studied for a single hop as we do here.

13The nodes used consume 82 mW during transmission with an output power of 1 mW,
and 180 mW during reception (Shih et al., 2004, p. 82). At a rate of 1 Mbit/s this
amounts to a total processing cost of 262 nJ/bit, but the displayed results start at roughly
82 nJ/bit (Shih et al., 2004, Figure 13). This indicates that only the transmitter’s energy
consumption has been accounted for.
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the required signal-to-noise ratio per bit γ at the receiver can be reduced from
the uncoded γu to the coded γc, where subscripts u and c denote uncoded
and coded schemes respectively (observe that γc is the signal-to-noise ratio
per information bit, just like γu). According to the Mikami power amplifier
degradation model (2.14), which states that the actual power consumption
decreases less than the radiated power, we achieve the following reduction of
the transmission energy per bit:

ET,c =
ET,u

G
1/g
c

. (4.38)

The efficiency degradation effect is quantified by the degradation exponent
g, which is a property of the transmitter’s power amplifier.

The total energy per bit consumed by the coded scheme is affected by an
increased transmission time caused by the code redundancy 1/Rc, effectively
increasing the processing energy. Also taking the per-bit energy consumption
ECD of the coding and decoding processes into account, we find by use of
(4.38) that

Etot,u = ERP + ET,u (4.39)

Etot,c =
ERP

Rc
+

ET,u

G
1/g
c

+ ECD, (4.40)

where ERP is the total processing energy per bit as given by (2.5). By
normalising (4.39) and (4.40) with respect to the radio processing energy
ERP we obtain

Ĕtot,u = 1 + ρ′u, (4.41)

Ĕtot,c =
1

Rc
+ ρ′u

1

G
1/g
c

+ ĔCD, (4.42)

where ρ′u is the transmission-to-total-processing ratio of the uncoded trans-
mission (R = 1), see (2.8). Above, we have suppressed the parameters
dependence of Gc and ECD on Rc for notational convenience.

Optimisation of the code rate Rc to achieve the minimum energy con-
sumption (4.42) would now be straight-forward had we explicit models of
Gc(Rc) and ĔCD(Rc). Unfortunately there are, to the best of our knowledge,
no such general models with adequate accuracy. Therefore, we will first make
reasonable simplifications of Gc(Rc) and ĔCD(Rc) that allow us to gain in-
sights into the energy-optimal choice of code rate. Second, we specialise our
study to adaptive coding within a class of BCH codes (Bose, Chaudhuri and
Hocquenghem).
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Neglected coding and decoding energy consumptions. Howard et al.
(2006) assess several practical coding schemes with respect to the trade-off
between the coding gain and the energy cost of decoding, and based on their
analysis we make the following simplifying approximation.

Assumption 4.1 The processing energy consumption for coding and decod-
ing is negligible in relation to other processing energy costs,

ECD = 0. (4.43)

According to Howard et al. (2006), the energy consumption can be as small as
tens of pJ per bit, and this can be compared to ultra-low power radios, such
as the one developed by Chee (2006), which at best achieve communication
energies of a couple of nJ.14 Also the work by Shih et al. (2004, Figure 12)
supports this simplification.

An upper bound on the coding gain. We make use of an upper bound
Gc,max applicable for block codes given in (Anderson and Svensson, 2002,
p. 83),

Gc ≤ Gc,max = Rc(t+ 1), (4.44)

where t is the number of errors the code can correct (of course, for any
useful code we have Rc(t + 1) > 1).15 The error-correcting capability t is
dependent on Rc, t = t(Rc), so we have not arrived at a analytical expression
which we can optimise directly. However, we can now more easily calculate
a conservative limit for specific (Rc, t)-codes because values of Rc and t are
readily available in the literature for many codes.

Example 4.1 Coding Gains From BCH Codes

A common and well-known set of block codes is due to Bose, Chaudhuri and
Hocquenghem, and are consequently termed BCH codes. Proakis (2001,

14Howard et al. (2006) do not include the energy cost of the increased transmission time
– due to radio baseband processing of the redundancy bits of the code – and therefore reach
the conclusion that error correcting codes are motivated already at very short distances,
on the order of metres. Our present study concerns precisely the trade-off between the
extra radio processing of redundant code bits and the transmission energy gain.

15For convolutional codes, the upper bound is given by Rcdfree where dfree is the min-
imum free distance of the code (Proakis, 2001, p. 510). Both this limit and the one in
(4.44) are derived for the binary symmetric channel with Gaussian noise.
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Table 8.1-6) give t and Rc for a range of different BCH codes with block
lengths from 7 to 255. We find that the best of these codes in terms of
Gc,max is the (255,115) code which has Gc,max = 9.92. Application of this
code will consequently give at most a 10 dB reduction in transmission
energy per bit. This limit is however quite optimistic with respect to
practical cases. Let us illustrate by comparing the actual gains of two
other BCH codes with their upper bounds. The actual gains (Goldsmith,
2005, Figure 8.4) pertain to bit error rates B = 10−4 and B = 10−6 for
binary phase shift keying and are displayed in Table 4.1. The fact that the

Table 4.1: Coding gains for the (127,36) and (127,64) BCH codes.

Gc(B = 10−4) Gc(B = 10−6) Gc,max

(127,36) 1.46 2.15 4.54
(127,64) 1.94 2.52 5.54

upper bound Gc,max is not tight will have impact on the present energy
comparison, see Figure 4.7.

The above example shows the optimistic nature of the bound in (4.44) for
bit error rates B ≥ 10−6: it appears that the bound is at least a factor two
too large. Therefore, in order to obtain a simple, yet reasonably realistic,
model of the coding gain, we make the following assumption:

Assumption 4.2 The coding gain of a rate Rc block code with error-correcting
capability t is

Gc = Rc(t+ 1)/2. (4.45)

Transmission-to-processing concentration. When employing an er-
ror correcting code, the purpose is here reduction of the transmit energy,
but it also increases the processing energy. The result is a decrease in the
transmission-to-processing ratio to

ρ′c = ρ′u
Rc

G
1/g
c

(4.46)

where the second factor RcG
−1/g
c < 1 for all codes of interest. We thus ex-

pect to observe a transmission-to-processing ratio concentration, as discussed
previously when we considered Shannon-limit rate optimisation. Error cor-
recting codes will counteract very large transmission-to-processing ratios.
We return to this matter in the numerical results.
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4.3.2 Energy saving through error correction

Employing a rate Rc code saves a fraction w of energy if

(1− w)Ĕtot,u = Ĕtot,c. (4.47)

By the use of (4.41) and (4.42) we obtain

(1− w)
(
1 + ρ′u

)
=

1

Rc
+ ρ′u

1

G
1/g
c

, (4.48)

where we have invoked our simplifying assumption ĔCD = 0. We can rear-
range the above as

w =
1 + ρ′u

(
1− G

−1/g
c

)
− R−1

c

1 + ρ′u
. (4.49)

Note that (4.49) is optimistic from a coding perspective as it neglects cod-
ing/decoding processing. We can only compute it for specific examples for
given target bit error rates B; the coding gain Gc depends on the target bit
error rate B and grows larger as B decreases. The use of the upper bound
in (4.44) leads to the saving

w =
1 + ρ′u

(
1− (Rc(t+ 1))−1/g

)
− R−1

c

1 + ρ′u
, (4.50)

which is indeed optimistic.

4.3.3 Adaptive coding within a class of BCH codes

Up to this point we have compared uncoded transmission with coded, but
we have not compared different code rates. As we discussed previously,
the globally optimal solution is difficult to obtain due to the lack of good
energy models and the complexity of an exhaustive search over all codes.
But by the use of our bound in (4.50) we can find the best sequence of codes
within a specified class. The result will certainly not be the absolutely best
choice but it will give good guidance and serve a useful purpose. Indeed,
it is commonplace to optimise within a specified class of codes for practical
reasons, see for example the work by Vucetic (1991) or Rice and Wicker
(1994). There is a large body of literature on adaptive coding, but note that
our topic here is different in that we are concerned with energy efficiency
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under processing costs rather than throughput and spectral efficiency which
are the common themes.

In analogy with (4.48) we can compare two codes (Ra, Ga) and (Rb, Gb)
by the use of

1

Ra
+ ρ′u

1

G
1/g
a

≥ 1

Rb
+ ρ′u

1

G
1/g
b

, (4.51)

and hereby quantify the (uncoded) transmission-to-processing ratio ρ′u re-
quired to change from code a to code b. The change-point is given by

ρ′u ≥ Ra − Rb

RaRb

G
1/g
a G

1/g
b

G
1/g
b − G

1/g
a

. (4.52)

Let us now restrict ourselves, like Rice and Wicker (1994), to the class of
BCH linear block codes and also make use of the upper bound Gc,max on the
coding gain. We performed the search over all BCH codes listed by Proakis
(2001, Table 8.1-6) to find the ones with the smallest energy consumption

Ĕtot =
1

Rc
+ ρ′u

1

G
1/g
c

(4.53)

for different transmission-to-total-processing ratios ρ′u. It turned out that
all the chosen codes were of block length 255 (the longest length within the
class).16 The use of a single block length simplifies the implementation of
adaptive block coding, so this feature is welcome. Our results are given in
Table 4.2 for two cases. First, we show the results for the ideal case when
Gc = Gc,max and the power amplifier consumption scales proportionally to
the radiated power, that is g = 1. Second, we give results for a more realistic
scenario when only half of the upper-bound gain is realised, Gc = Gc,max/2,
and the power amplifier degradation exponent is g = 2.8. At first, the
results appear counter-intuitive. As a larger degradation exponent g, and
the reduced coding gain, reduces the transmission energy gains achievable
by the coding, we would have expected higher code rates for g = 2.8 than
for g = 1. This is also the case for transmission-to-total-processing ratios
ρ′u < 0.5, but for ρ′u > 0.5 the result is the opposite. It seems that for large
ρ′u it is worth compensating the loss caused by the amplifier degradation by
stronger coding; in the ideal case it suffices with higher code rates.

16Longer block lengths can, if included, of course turn out to be more favourable than
the ones we have included here. Our goal is however not to find the overall optimal error
correcting code, but to capture the first order energy-effects from coding. Moreover, if
very short data packets are used, even the codes we consider here can be too long.
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Table 4.2: Adaptive BCH coding based on (4.52) and the upper bound
on the coding gain given by (4.44). The two rightmost columns give the
transmission-to-processing threshold at which the code should be changed
for the next one in the leftmost column. All numbers correspond to a
receiver-to-transmitter processing ratio α = 1.

Code Rate Transmission-to-total-
(n, k) Rc processing threshold ρ′u

Gc,max, g = 1 Gc,max/2, g = 2.8

(1,1) 1.0 0.00 0.00
(255,247) 0.969 0.07 (-)
(255,239) 0.937 0.22 (-)
(255,231) 0.906 0.47 0.55
(255,223) 0.875 0.84 0.76
(255,215) 0.843 1.37 1.11
(255,207) 0.812 2.12 1.57
(255,199) 0.780 3.14 2.18
(255,187) 0.733 3.46 2.21
(255,179) 0.702 8.89 5.32
(255,171) 0.671 12.7 7.47
(255,163) 0.639 18.7 10.6
(255,131) 0.514 21.4 11.4
(255,115) 0.451 163 82.3

4.3.4 Results for adaptive BCH coding

In Figure 4.7 the results from an optimisation according to (4.52) is shown
for both the ideal case (Gc = Gc,max, g = 1) and the more realistic (Gc =
Gc,max/2, g = 2). We observe the following from Figure 4.7:

Code rate. As expected, the code rate Rc decreases as the transmission-to-
processing ratio increases: When the transmission costs become domi-
nant it is motivated to use stronger codes. In the ideal case, coding is
attractive already for ρ′u = 0.1 because of the optimistic upper bound
Gc,max in conjunction with the constant power amplifier efficiency. In
the more realistic case where we consider both efficiency degradation
and smaller coding gains, the transmission-to-total-processing ratio
must exceed 0.4 to motivate coding. Quite counter-intuitively, how-
ever, the code rates are lower in the more realistic case once they are
introduced. This is probably due to the fact that even the higher code
rates pay off very well in the ideal case. In any case, very low code
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Figure 4.7: Code rate Rc (blue, left axis), energy saving factor w (red, left
axis) and resulting transmission-to-total-processing ratio ρ′c (black, right
axis) resulting from an energy-optimal code rate choice within a class of
BCH codes. Two cases are given; the ideal case Gc = Gc,max and g = 1
(dashed lines), and the realistic case Gc = Gc,max/2 and g = 2 (solid lines).
Note the drastically reduced efficiency of coding in the realistic setting.

rates Rc < 1/2 are never used over the range studied. The lowest rate
used by the CC100 radio is Rc = 0.73.

Energy saving. There is a significant difference between the ideal and the
more realistic case when it comes to energy savings. Note that, out
of the radio examples shown, it is only the CC1000 radio that would
benefit from error correcting codes with a maximum saving of about
17 percent according to the non-ideal characteristics.

New ρ′c. Adoption of error correcting codes decreases the transmission costs
and hence also the transmission-to-processing ratio. The more trans-
mission energy we have to expend, the lower the optimum code rate
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will be. This is the concentration phenomenon noted for the Shannon-
limit optimisation in Section 4.1. It is clear from Figure 4.7 that there
is such an effect, although it is less pronounced in the more realistic of
the two cases shown.

Fading channels

Our results are based on the assumption of a static channel. In the unlikely
case of a fast fading channel (changing on a symbol-time scale, see Defini-
tion 2.1), the errors can be sufficiently independent over symbols to render
the coding efficient. On the other hand, fast power control would require im-
mense feedback to counter the fast changes: The combination of slow power
control and coding seems an appropriate choice.

For slow channels the power control feedback would suffice to determine,
for each packet, the best code rate within a class of codes. A small additional
overhead would however be required to reveal the code rate in use, but we
here omit this overhead under the assumption that it is significantly smaller
than the power control related overhead common to all code rates. It would
affect the choice between codes or no codes, but not the choice between
codes.

Range extension

Saving energy is not the only reason to use error correcting codes. Another,
displayed in Figure 4.7, is that the codes can extend the transmission range.
Consider the CC1000 radio operating at 434 MHz. It has a ρ′max = 1.6 and
the use of adaptive BCH coding can at most save 17 percent of the total
uncoded energy per bit at maximum output power (go from the horizontal
axis at ρ′u = 1.6 in Figure 4.7 to the curve for w). However, the rate 0.81
code then in use has decreased the transmission-to-total-processing ratio to
ρ′c ≈ 0.8 and the radio is not operating at maximum output power; it can
transmit over longer ranges. Considering the coded transmission-to-total-
processing ratio ρ′R, we can start from vertical, rightmost, axis at ρ′R = 1.6
to find that the lowest, energy-efficient code rate for the CC1000 radio is
Rc = 0.73 – going below that would always be inefficient although it could
still be motivated by a need for range-extension.

4.3.5 Summary error correcting codes

Judging from the most realistic case of adaptive BCH codes that we have con-
sidered, error correcting codes require uncoded transmission-to-total-process-
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ing ratios ρ′u > 0.4 to be energy-wise attractive. The power control scheme
of Section 4.2 becomes attractive somewhat earlier and it is therefore rea-
sonable to assume that the gains from error correcting codes can be reaped
by this scheme. Code rates between Rc = 1 and Rc = 2/3 are the ones used,
and lower rates seem to be of limited energy-saving value.

4.4 Adaptive QAM modulation

Energy-constrained adaptive modulation, with and without error correct-
ing codes, was explored by Cui et al. (2005) who considered M -ary fre-
quency shift keying (MFSK) and M -ary quadrature amplitude modulation
(MQAM). The general conclusion was that optimised MQAM could save
considerable amounts of energy, for short distances when high rates could be
used, by reducing the transmission time. We here review this modulation
optimisation briefly, with our focus on the transmission-to-processing ratio
ρ, and then investigate whether the relatively complex and processing inten-
sive hardware platform that adaptive MQAM requires can be motivated by
the attained energy savings. Our conclusion is that it can not be motivated
solely by energy consumption arguments.

4.4.1 Energy consumption models

Regarding coherent MQAM transmissions, we begin with the observation
that binary phase shift keying (2QAM) and quaternary phase shift keying
(4QAM) have the same signal-to-noise ratio requirement (Proakis, 2001) and
it is therefore always better to use 4QAM in the present context since we
can transmit the data in half the time.17 We let

b ≡ number of bits per symbol, (4.54)

where b ≥ 2 since we restrict ourselves to M = 2b ≥ 4. Let us define
the optimisation with respect to 4QAM, b = 2, just like we defined the
Shannon-limit optimisation with respect to a reference spectral efficiency
C0, see (4.6). Including the power amplifier efficiency degradation (2.14)
and the peak-to-average power ratio of MQAM (more on this later on), our

17We are here assuming that the system always processes both the in-phase component
and the quadrature component. Of course, a system designed solely for 2QAM could
work with less processing costs than a system designed for 4QAM, but in our present
problem the adaptivity requires both components and the possible gain for 2QAM is thus
unattainable.
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normalised total-energy model, which conforms to the model used by Cui
et al. (2005), is

Ĕtot(b) =
Etot(b)

ERP(b = 2)

=
ERP(b)

ERP(b = 2)
+

ET(b)

ERP(b = 2)

=
2

b
+ ρ′2

ε(2)

ε(b)

(
γ(b,B)

γ(2, B)

)1/g

,

(4.55)

where ρ′2 is the transmission-to-total-processing ratio for b = 2. In (4.55), the
last line, the first term on the righthand side is the normalised processing
energy which is inversely proportional to b, while the second term is the
normalised transmission energy, both with respect to 4QAM, b = 2: if we
insert b = 2 we arrive at Ĕtot = 1+ρ′2. Moreover, we have in (4.55) introduced
the large-symbol penalty

ε(2)

ε(b)
, (4.56)

due to increased peak-to-average power ratio for larger b.

Assumption 4.3 For MQAM symbols with b bits per symbol, consideration
of the symbols peak-to-average power ratio leads to a large symbol energy
penalty relative to b = 2 of

ε(2)

ε(b)
= 3

√
2b − 1√
2b + 1

. (4.57)

See Appendix 4.G for a motivation of Assumption 4.3. The larger symbols
also require better signal-to-noise ratio per bit to satisfy the target bit error
rate B, and this enters (4.55) through the factor

γ(b,B)

γ(2, B)
. (4.58)

Assumption 4.4 The bit error rate B for Gray coded MQAM, M = 2b,
b ≥ 2, is

B =
2

b
·
√
2b − 1√
2b

· erfc
(√

3b

2b − 1

γ

2

)
, (4.59)

where γ is the received signal-to-noise ratio per bit.
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See Appendix 7.A for our motivation of assumption 4.4.
We make the following observations before we move on to numerical

results:

• Similar to the Shannon-limit optimisation in Section 4.1, optimisa-
tion of the number of bits per symbol b rests on the trade-off between
decreased processing time and increased transmission power. The dif-
ferences are in the transmit energy term, where we now include: a
peak-to-average power penalty for large b; the power amplifier effi-
ciency degradation through g; a slightly different scaling behaviour of
the radiated energy though (4.59).

• A degradation exponent g > 1 will tend to favour large b because larger
b require more output power and hence the amplifier can operate more
efficiently.

• Judging from (4.59), the received signal-to-noise ratio per bit γ must
scale approximately like

2b − 1

b
(4.60)

to maintain a given bit error rate B. This is the same behaviour as
the Shannon limit in (4.1). In fact, as we outline in Appendix 4.I, this
Shannon-type scaling holds approximately also for Nakagami-m fading
channels. This means that the results obtained by the use of (4.59)
will be representative for a larger range of conditions than expected.

4.4.2 Optimisation results

The energy-optimised number of bits b per symbol is shown in Figure 4.8 to-
gether with the continuous rate optimisation based on the Shannon limit, see
(4.6). First we observe that there is a close correspondence between these
two optimisations when the power amplifier degradation exponent g = 1,
which was assumed in Section 4.1. They are separated by an approximately
constant distance of 4 dB due to the peak-to-average factor in Assump-
tion 4.3. These results are also in agreement with the ones provided by Cui
et al. (2005). Second, we see that inclusion of the degradation exponent g
significantly increases the preferable number of bits b per symbol. This effect
signifies that power amplifiers should be operating close to their maximum
efficiency, and that the peak-to-average penalty of large symbols thereby is
outweighed. Third, we would like to stress that constellation sizes grow ex-
ponentially with the number of bits, M = 2b. In practice it is not reasonable
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Figure 4.8: Number of bits b per optimised MQAM symbol (solid lines),
and the optimised spectral efficiency based on the Shannon limit (dashed
line), in the static channel scenario. All results are obtained with B = 10−6.

to assume that b = 16, say, could be used as it corresponds to 65536-QAM.
Therefore we indicate the limit b = 6, that is 64-QAM, as a reasonable prac-
tical constraint in the figure. We comment more on practical considerations
in Section 4.4.4. Fourth, for transmission-to-total-processing ratios ρ′ > 1/2
there is no preference for large MQAM symbols since the processing cost is
not overly dominant.

Energy savings and transmission-to-processing ratio

As usual, we quantify the obtained energy reduction in relative terms, presently
compared to the energy consumption for b = 2,

w =
Ĕtot(2)− Ĕtot(b)

Ĕtot(2)
, (4.61)

with w being the fraction of saved energy, and Ĕtot(b) is given by (4.55).
By transmitting with b bits per MQAM symbol, the transmission-to-total
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processing ratio is found from (4.55),

ρ′b =
ρ′2

ε(2)
ε(b)

(
γ(b,B)
γ(2,B)

)1/g

2
b

= ρ′2
b

2

ε(2)

ε(b)

(
γ(b,B)

γ(2, B)

)1/g

.

(4.62)

This is, naturally, steadily increasing with b for a fixed ρ′2: increasing b
means increasing the per bit transmission costs and decreasing the per bit
processing costs.

The fraction w of energy saved by MQAM optimisation is shown in Fig-
ure 4.9, which also displays the resulting transmission-to-total-processing
ratio ρ′b after applying the new symbol size. Clearly, for small transmission-
to-total-processing ratios ρ′2 < 0.1 there are large processing costs to be
saved by balancing them better against the transmission costs – note the
significant increase in the transmission-to-total-processing ratio ρ′b achieved.
We observe that even if we constrain the optimisation to b ≤ 6, there seems
to be large attainable reductions in energy consumption. So, given that we
have nodes with the flexibility exploited here we should definitely use it for
short distances. However, there are several practical constraints not included
in the model, and also the question if the increased energy consumption of
a flexible hardware platform pays off in the end. So let us now turn to this
question.

4.4.3 How much is adaptivity worth?

A radio supporting coherent detection of adaptive MQAM is naturally more
complex than, say, a radio designed for envelope (square-law, non-coherent)
detection of binary frequency shift keying (NCFSK). So even if the adap-
tive approach can save substantial amounts of processing energy at small
transmission-to-processing ratios it will start from a higher level than a sim-
ple non-coherent radio. Let us see how much larger the initial processing
cost is allowed to be for adaptivity to be worth its price.

We use the subscripts Q and N to denote the MQAM and binary NCFSK
schemes respectively. To motivate the adaptive MQAM system the following
inequality must be satisfied,

ERP,Q(b) + ET,Q(b) < ERP,N + ET,N, (4.63)

where we have used the total processing energy per bit ERP and the trans-
mission energy per bit ET. In accordance with (4.55) and the reasoning
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regarding amplifier efficiency we can rewrite the inequality as

ERP,Q(2)

b/2
+ET,Q(2)

εQ(2)

εQ(b)

(
γQ(b,B)

γQ(2, B)

)1/g

< ERP,N+ET,Q(2)
εQ(2)

εN

(
γN(B)

γQ(2, B)

)1/g

,

(4.64)
where the left-hand side is optimised with respect to b. Presently, we are
interested in the maximum allowed processing cost of the adaptive hardware
relative to the simple non-coherent radio. For this reason we define the
processing-to-processing ratio

β ≡ ERP,Q(b = 2)

ERP,N
. (4.65)

Solving (4.64) for β yields the upper limit

β <

(
2

b
+ ρ′2

[
εQ(2)

εQ(b)

(
γ(b,B)

γ(2, B)

)1/g

− εQ(2)

εN

(
γN(B)

γ(2, B)

)])−1

(4.66)

with ρ′2 = ET,Q(2)/ERP,Q(2) the adaptive transmitter’s transmission-to-total-
processing ratio. Note that b is a function of ρ′2 for an optimised MQAM
transmission.
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Two entities are still unspecified: The ratios εQ(2)/εN and γN(B)/γ(2, B).
The former is determined by the amplifier efficiencies, and since NCFSK can
operate with a non-linear amplifier its efficiency is superior to the MQAM
amplifier. Without further due we assume that the ratio is 3/4. For a given
bit error rate criterion B, the penalty in required per-bit signal-to-noise ra-
tio γ is for NCFSK about 4 times, or 6 dB, relative to 4-QAM (Proakis,
2001). With these numbers we calculate the upper limit in (4.66); the re-
sult is displayed in Figure 4.10. When the non-coherent system operates
under balanced conditions, that is with a transmission-to-processing ratio
ρ′N ≈ 1, we see that the adaptive MQAM system can not afford more than
roughly 50 percent more processing energy than its non-coherent competi-
tor; β ≈ 1.5. To be uniformly superior, the implementation of adaptivity can
add at most 15 percent processing cost. As we deem such a design virtually
impossible, our conclusion is that an adaptive hardware platform supporting
MQAM will save energy for nodes communicating of good links but waste
energy for nodes in more demanding conditions; it will take from the poor
and give to the rich. Greater energy-unbalance than necessary can be caused
between “rich” and “poor” nodes. 18

4.4.4 Practical limitations

Unconstrained MQAM optimisation can as we have seen result in extreme
symbol sizes. Here we give a brief list of practical considerations not included
in our present analysis, considerations that disfavour an adaptive MQAM
implementation.

Analog to digital converter (ADC). The use of larger MQAM symbols
puts harder requirements on the receiver’s ADC. Imprecise discretisa-
tion can increase the effective noise level and cause error floors. An
example of the impact of the number of ADC levels is given by Shen
and Zhang (2002) who study the caused loss in signal-to-noise ratio for
MQAM modulation. A 6-bit ADC causes a 6 dB loss for 256-QAM and
a 2 dB loss for 64-QAM. In order to get below 0.5 dB in loss, an 8-bit
ADC is needed for 64-QAM and a 9-bit ADC is needed for 256-QAM.

Phase noise. In addition to other noise sources, the phase noise of the local
oscillator used in the receiver can cause problems for large MQAM
symbols. Costa and Pupolin (2002) study the impact of phase noise

18Observe that the increase in β for ρ′
N > 1 is due to the transmission-energy advantage

of MQAM, but this advantage would decrease by the use of error correcting codes as
previously studied.
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shift keying alternative. We here use α = 1.

and we can in there work see energy penalties exceeding 5 dB even
for moderate levels of phase noise in a 16-QAM receiver. The penalty
increases significantly with symbol size.

Channel uncertainties. With increasing number of bits per symbol, the
sensitivity to channel estimation error becomes more pronounced and
translates to a need for more overhead transmissions. Correct detec-
tion of large MQAM symbols requires significantly more precise chan-
nel state information than does non-coherent detection of orthogonal
signals.

Non-linear decrease in processing costs. Assuming that all processing
costs scale like 1/b is obviously optimistic as some overhead costs,
such as the startup energy consumption, are unaffected by the symbol
size. Interestingly, Shih et al. (2001) found that the start-up time has
significant impact, and if it is not short enough the gains from MQAM
are erased.

Monetary costs. Complexity costs money, and the sophisticated transceivers
needed for MQAM can come at a cost that outweighs the saving in en-
ergy (although this is highly application dependent).
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4.4.5 Summary adaptive QAM

Indeed, if nodes are equipped with flexible QAM transceiver hardware, it is
difficult to argue against the use of adaptive MQAM – except possibly by
considering the overhead required for adapting the rate. However, the other
negatives in terms of complexity, monetary costs, increased processing energy
and greater energy imbalance between nodes rule out the use of sophisticated
MQAM radios for most energy-limited wireless sensor networks.

4.5 Conclusions

Shannon-limit rate optimisation. The idealised energy optimisation
highlights two matters:

• The fundamental trade-off between processing and transmission energy
that can not be avoided in the present sensor-network context.

• Transmission optimisation will, typically, tend to balance transmission
and processing energies; as soon as one of them dominates there is
probably a better alternative.

Power control. Regarding truncated channel inversion we come to the
conclusion that if we aim at actually saving energy the transmission-to-total-
processing ratio should be larger than 1/3. Below this threshold there is
really no energy gain from power control, and we note that several existing
radios therefore should use a fixed output power. Above the threshold the
gain increases steadily even for substantial amounts of control information
feedback.

• Use power control to counter slow fading, when limited feedback can
be used, and leave fast fading to the channel codes.

• Coarse grained power control is probably enough; it will reap the major
gains at a small feedback fraction. There is no need for adjustable
power below ρ′ = 1/3.

Error correcting codes. Channel coding is a good complement to power
control and should be used for transmission-to-total-processing ratios ρ′ >
0.4. Simple, fixed block length, codes will suffice. Single length blocks facil-
itates simple, slow, adaption of the code rate.
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Adaptive MQAM. Requires complex and processing intensive radio ar-
chitecture; the processing energy is in fact too large to motivate the adap-
tivity from en energy point-of-view. Therefore, adaptive MQAM should be
used only if the platform supports it for other reasons.



134 4.A. Proof of Lemma 4.1

Appendix 4.A Proof of Lemma 4.1

Setting the derivative of (4.6), with respect to Ce, to zero we obtain an equation to
solve for the optimum spectral efficiency Copt,

ρ′0
(
1− 2Copt + Copt2

Copt ln(2)
)
= 2C0 − 1. (4.67)

Rearranging terms and exploiting that 2x = eln(2)x we take the following steps

Copt2
Copt ln(2)− 2Copt =

2C0 − 1− ρ′0
ρ′0

, (4.68)

ln(2)Copte
ln(2)Copt − eln(2)Copt =

2C0 − 1− ρ′0
ρ′0

, (4.69)

ln(2)Copte
ln(2)Copt−1 − eln(2)Copt−1 =

2C0 − 1− ρ′0
eρ′0

, (4.70)

(ln(2)Copt − 1) eln(2)Copt−1 =
2C0 − 1− ρ′0

eρ′0
. (4.71)

We can now use the Lambert W function WL since it is the solution to x =
WL(x) exp(WL(x));

ln(2)Copt − 1 = WL

(
2C0 − 1− ρ′0

eρ′0

)
, (4.72)

Copt =
1

ln(2)

[
1 +WL

(
2C0 − 1− ρ′0

eρ′0

)]
. (4.73)

Appendix 4.B Proof of Theorem 4.1

First we rearrange (4.67) to

1− 2Copt + Copt2
Copt ln(2) =

2C0 − 1

ρ′0
. (4.74)

Then we invoke (4.7), which states that the post-optimisation transmission-to-total-
processing ratio

ρ′opt = ρ′0
2Copt − 1

2C0 − 1
, (4.75)

on the right hand side of (4.74). Isolating ρ′opt we arrive at

ρ′opt =
2Copt − 1

ln(2)Copt2Copt − (2Copt − 1)
. (4.76)

With the aid of Mathematica 6 (Wolfram Research Inc., 2007) we can then solve
(4.76) for the spectral efficiency Copt to arrive at equations (4.11) and (4.12) in
Theorem 4.1.
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Appendix 4.C Proof of Corollary 4.1

Begin by multiplying both sides of (4.10) by Copt;

ρ′optCopt =
Copt

(
2Copt − 1

)
ln(2)Copt2Copt − (2Copt − 1)

. (4.77)

Then rewrite as

ρ′optCopt =

(
1− 2−Copt

)
ln(2)− 1−2−Copt

Copt

(4.78)

to see that

lim
Copt→∞

ρ′optCopt =
1

ln(2)
. (4.79)

To obtain the limit when Copt → 0 we make use of the first l’Hôpital rule – valid for
limits of the form 0/0 – which is based on the limit of the ratio of the derivatives.
Differentiating the numerator and denominator in (4.77) with respect to Copt we
obtain

lim
Copt→0+

ρ′optCopt = lim
Copt→0+

d
dCopt

Copt

(
2Copt − 1

)
d

dCopt
(ln(2)Copt2Copt − (2Copt − 1))

= lim
Copt→0+

(
2Copt − 1

)
+ ln(2)Copt2

Copt

ln2(2)Copt2Copt

= lim
Copt→0+

1

ln(2)

[
1 +

1

ln(2)

1− 2−Copt

Copt

]
=

1

ln(2)
+

1

ln2(2)
lim

Copt→0+

1− 2−Copt

Copt

=
2

ln(2)
.

(4.80)

In the last step we used a second application of the first l’Hôpital rule to find that

lim
Copt→0+

1− 2Copt

Copt
= lim

Copt→0+
ln(2)2−Copt

= ln(2).

(4.81)

It remains to show that the derivative of ρ′optCopt in (4.77) with respect to Copt is
non-positive. Differentiating the right hand side of (4.77) with respect to Copt we
obtain

d

dCopt
ρ′optCopt =

d

dCopt

Copt

(
2Copt − 1

)
ln(2)Copt2Copt − (2Copt − 1)

=
2CoptC2

opt ln
2(2)−

(
2Copt − 1

)2
(ln(2)Copt2Copt − (2Copt − 1))

2 ,

(4.82)
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where the denominator is positive for all Copt > 0. Let us now perform a series
expansion of the nominator in (4.82) around Copt = 0,

2CoptC2
opt ln

2(2)−
(
2Copt − 1

)2
=

∞∑
n=4

lnn(2)

n!
(2 + n(n − 1)− 2n)Cn

opt. (4.83)

Since all coefficients 2 + n(n − 1) − 2n in the series expansion are negative for all
n > 1, the derivative must be negative over the whole positive range of spectral
efficiencies Copt. Note that the end-point limits of the derivative in (4.82) are

lim
Copt→0+

2CoptC2
opt ln

2(2)−
(
2Copt − 1

)2

(ln(2)Copt2Copt − (2Copt − 1))
2 = −1

3

lim
Copt→∞

2CoptC2
opt ln

2(2)−
(
2Copt − 1

)2
(ln(2)Copt2Copt − (2Copt − 1))

2 = 0,

(4.84)

as obtained by the use of Mathematica 6 (Wolfram Research Inc., 2007).

Appendix 4.D Proof of Theorem 4.2

By the use of (4.20) and the channel inversion rule (4.24) we express the received
signal-to-noise ratio

γICI = Kxf
EICI,0

xf

= KEICI,0.

(4.85)

This constant signal-to-noise ratio per bit must be the same as for the static channel,
γsta, and we can by the use of Definition 4.1 find that

EICI,0 =
ELM

ML
. (4.86)

The inversion rule at the transmitter can hence be written

EICI =
ELM

ML

1

xf
. (4.87)

Through averaging over our gamma probability distribution for xf we obtain by the
use of Gradshteyn and Ryzhik (2000) or Mathematica 6 (Wolfram Research Inc.,
2007)

E ICI =
ELM

ML

∞∫
0

1

xf

mm

Γ(m)
xm−1

f e−mxfdxf

=
m

m − 1

ELM

ML
, (4.88)

where the last step is valid for m > 1.



Chapter 4. Power Control and Rate Adaption 137

Appendix 4.E Proof of Lemma 4.3

At the receiver, the signal-to-noise ratio per bit is γrec = KxfErad, see (4.20). The
power-limited control scheme in (4.27) will achieve a signal-to-noise ratio

γCI = KxfECI

=

{
γLM

ECI,0

ELM
, xf ≥ ECI,0

Emax

γLM
Emax

ELM
xf , xf <

ECI,0

Emax

, (4.89)

where the two cases correspond to a perfectly inverted channel and the residual
fading when the transmitter uses its maximum output Emax, respectively. For a
fading probability distribution p(xf |I), we obtain through a change of variables
from xf to γCI according to (4.89) the following

p(γCI|I) =δ

(
γCI −

ECI,0

ELM
γLM

) ∞∫
ECI,0
Emax

p(xf |I)dxf

+

[
1−Θ

(
γCI −

ECI,0

ELM
γLM

)]
p

(
γCI|γCI = γLM

Emax

ELM
xf , I

)
,

(4.90)

where δ(·) is Dirac’s delta function and Θ(·) is Heaviside’s theta function. The first
term is the probability that the channel can be inverted, and the the received signal-
to-noise ratio per bit thereby is kept constant. The second term is the probability
density function for the remaining, non-inverted but reduced, channel variations.
Now, assuming perfect channel estimates at the receiver, we can average the static-
channel bit error rate Bsta(γ) over (4.90):

BIC =

∞∫
0

Bsta(γCI)p(γCI|I)dγCI

= P

(
xf ≥

ECI,0

Emax
|I
)

Bsta

(
γLM

ECI,0

ELM

)

+

γCILM

ECI,0
ELM∫

0

p

(
γCI|γCI = γCILM

Emax

ELM
xf , I

)
Bsta(γCI)dγCI

(4.91)

We have through Assumption 2.6 on page 29 assigned a gamma distribution
for xf , Gam(xf |m, 1). We obtain the following probability density function for the
received signal-to-noise ratio per bit γCI by the use of (4.90),

p(γCI|I) =δ

(
γCI −

ECI,0

ELM
γLM

) Γ
(
m, m

ECI,0

Emax

)
Γ (m)

+

[
1−Θ

(
γCI −

ECI,0

ELM
γLM

)]
mmγm−1

CI e
− m(

Emax
ELM

γLM

) γCI

Γ(m)
(

Emax

ELM
γLM

)m ,

(4.92)
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where we have used Mathematica 6 (Wolfram Research Inc., 2007) to find the
integrals in (4.90). The bit error rate for differentially detected binary phase shift
keying is in the static channel case (Proakis, 2001)

Bsta =
1

2
e−γsta . (4.93)

Inserting (4.93) and (4.92) into (4.91) we arrive at

BCI =
Γ
(
m, m

ECI,0

Emax

)
Γ (m)

· 1
2
e
−ECI,0

ELM
γLM

+
Γ (m)− Γ

(
m, ECI,0

(
m

Emax
+ γLM

ELM

))
Γ (m)

· 1
2

(
mELM

mELM + EmaxγLM

)m

(4.94)

by the use of Mathematica 6 (Wolfram Research Inc., 2007).

Appendix 4.F Proof of Theorem 4.3

The radiated energy per bit ECI follow

ECI =

{
Emax , xf ≤ ECI,0

Emax
,

ECI,0

xf
, xf >

ECI,0

Emax
.

(4.95)

The probability density function p(ECI|ECI,0, Emax, m, I) can be found from our
gamma distribution for xf and the limits given by (4.95). We obtain

p(ECI|ECI,0, Emax, m, I) = δ(ECI − Emax)P (xf ≤ ECI,0/Emax|m, I)

+ [1−Θ(ECI − Emax)] p(ECI/x|m, I),

= δ(ECI − Emax)

⎛⎝1− Γ
(
m, m

ECI,0

Emax

)
Γ(m)

⎞⎠
+ [1−Θ(ECI − Emax)]

mm

Γ(m)Em
CI,0

E−m−1
CI e

−m
ECI,0
ECI ,

(4.96)

where δ(·) is Dirac’s delta function and Θ(·) is Heaviside’s theta function. The first
term thus represents the occasions when the output power is not enough to invert
all channel conditions, while the second term represents the invertible conditions
for which ECI ∝ 1/xf . We can by the use of the definition of the incomplete
gamma function Γ(x, y) (Wolfram Research Inc., 2007), find the mean value of
p(ECI|ECI,0, Emax, m, I) as

ECI = Emax

Γ (m)− Γ
(
m, m

ECI,0

Emax

)
Γ (m)

+mECI,0

Γ
(
m − 1, m

ECI,0

Emax

)
Γ (m)

. (4.97)
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Appendix 4.G MQAM peak-to-average ratio

The peak-to-average power ratio of square MQAM is defined as the power of the
outermost signal point divided by the average power over all signal constellation
points. The possible constellation points in the IQ-plane19 are ±1,±2, . . . ,±

√
M ,

where M = 2b is the alphabet size and b is the number of bits per symbol. The
ratio can be found by considering the north-east quadrant of the constellation with
2b−2 points. The sum Psum of the squared Euclidian distances (that is the sum of
the powers) in this quadrant is

Psum =

√
2b−2∑

n=1

[
2(2n− 1)2 + 2

n−1∑
k=1

(
(2n − 1)2 + (2k − 1)2

)]
, (4.98)

where (n, k) is the coordinate of each point. The average power P = Psum/2b−2 can,
after some manipulations, or with the aid of Mathematica 6 (Wolfram Research Inc.,
2007) be evaluated to

P =
2

3

(
2b − 1

)
. (4.99)

Now, the maximum power Pmax is given by the outermost point and is

Pmax = 2
(
2
√
2b−2 − 1

)2

. (4.100)

Finally we get the peak-to-average ratio

QPAR(b) =
Pmax

P
= 3

√
2b − 1√
2b + 1

. (4.101)

Assuming that the efficiency of the amplifier is inversely proportional to QPAR(b),
we obtain

ε(2)

ε(b)
= 3

√
2b − 1√
2b + 1

. (4.102)

For non-square constellations the expression is not valid, but we will use the above
peak-to-average ratio for all rectangular constellations bearing in mind that we then
underestimate the peak-to-average ratio for non-square constellations. We include
the above effect mostly for the purpose of comparability with previous research
results (for instance Cui et al. (2004) make use of (4.102)).

Appendix 4.H MQAM bit error rates

First, let us note that one factor influencing the bit error rate behaviour is the
constellation design, that is the mapping of bits to signal points. Although it is
possible to optimise the MQAM constellations, see for instance (Proakis, 2001,

19The In-phase and Quadrature plane.
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Section 5.2.9), we here restrict the analysis to square Gray encoded constellations
for simplicity.

The symbol error rate S for square MQAM, corresponding to even values of b,
in the case of a time-invariant additive white Gaussian noise channel is (Goldsmith,
2005, p. 177)

S = 1−
(
1−

√
2b − 1√
2b

· erfc
(√

3

2b − 1

γs

2

))2

(4.103)

where γs is the signal-to-noise ratio per symbol. With Gray coded symbols and use
of the approximation that one symbol error equals one bit error – this is a good
approximation for large signal-to-noise ratios – we can write

B =
1

b

⎛⎝1−(
1−

√
2b − 1√
2b

· erfc
(√

3b

2b − 1

γ

2

))2
⎞⎠ (4.104)

where we have used γs = bγ with γ being the signal-to-noise ratio per bit. Expand-
ing the square in (4.104) and neglecting second order terms erfc2(·) we obtain for
b ≥ 2

B =
2

b
·
√
2b − 1√
2b

· erfc
(√

3b

2b − 1

γ

2

)
(4.105)

which is exact for b = 2 and a good approximation for b > 2.
By the use of the first term

B1 =
2

b
·
√
2b − 1√
2b

· 1√
π

√
2b − 1

3b
· 2
γ

e
− 3b

2b−1
· γ
2 , (4.106)

in a Taylor series expansion of (4.106) we can solve for the signal-to-noise ratio per
bit and obtain

γ(b, B) =

[
1

3
WL

(
8

π
·
(
1− 2−b/2

bB

)2
)]

2b − 1

b
, (4.107)

where WL denotes the Lambert W function. Observe that we here have, in the
first factor, a quantification of the distance to the Shannon limit in (4.1); the
rightmost factor has exactly the same scaling behaviour (2b − 1)/b as the Shannon
limit (4.1) for the signal-to-noise ratio per bit. The distance to the Shannon limit
is fairly constant with respect to the exponential behaviour of (2b − 1)/b, and
the optimisation results for MQAM will correspond closely with the Shannon-limit
optimisation. For illustration, consider a bit error rate B = 10−6. For b = 2 the
signal-to-noise ratio in (4.107) is 8.8 dB from the Shannon-limit while it for b = 20
is 8.2 dB away: Compared to the 45 dB increase of the factor (2b−1)/b, this change
of 0.6 dB is negligible.
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Appendix 4.I Average bit error for Nakagami chan-

nels

In the Nakagami fading case we calculate the bit error rate by the use of the gamma
distribution Gam(m, γ) for the received signal-to-noise ratio, see Assumption 2.6 on
page 29. Averaging the bit error rate in (4.106) we obtain (Wolfram Research Inc.,
2007)

B(m, γ) = (−1)m 2√
π
· 1− 2−

b
2

b
· Γ(1/2 +m)

Γ(m)
β

(
−2m
3γ

2b − 1

b
, m,

1

2
− m

)
, (4.108)

where β(z, x, y) denotes the incomplete beta function. If we for a moment ignore the
fine details of our bit error rate expression, and concentrate on the interconnection
between the average signal-to-noise ratio per bit γ and the number of bits b per
symbol, we see that the former appears in the following company,

γ · b

2b − 1
. (4.109)

Just like for the static channel and the outage criterion we thus find that the
minimum energy per bit must scale approximately like the Shannon limit (4.1).
There are of course differences, but a Shannon-type analysis actually captures the
most prominent scaling effects and can serve as a good reference case.





Chapter 5
Polarisation Receiver Diversity

THERE has during the last two decades been a vital interest in spatial
diversity/multiplexing techniques in the wireless communication com-

munity. Not that the idea is of spatial diversity is new, even Marconi used
an antenna array in his 1901 transatlantic transmission (Bondyopadhyay,
2000), but the demand for robust high speed communication combined with
important theoretical multiple-input multiple output (MIMO) results have
boosted the interest. Spatial diversity techniques have also been proposed
for the purpose of reducing the total energy consumption in energy limited
wireless sensor networks. Because of the limited possibility to equip small
nodes with antenna arrays the focus has been on cooperative techniques, see
for instance the work by Laneman (2002), Laneman and Wornell (2003) on
cooperative diversity, the work by Cui et al. (2004) on cooperative MIMO.

Curiously enough, the possibility to use polarisation diversity in place
of spatially separated antennas has been largely overlooked in spite of a
compact antenna configuration and the apparent suitability for small sen-
sor nodes.1 Perhaps there has been a suspicion that polarisations are not
independent enough in wireless sensor network scenarios, but judging from
our measurement results in Chapter 3 they are. Malik and Edwards (2007)
consider the benefits of polarisation diversity with the motivation of compact
design and reduced receiver complexity in an ultra wide-band system, but
there is to the best of our knowledge no analysis of the overall energy-wise
benefits of polarisation diversity. Of course, the transmission energy gains

1The use of polarisation diversity in mobile cellular networks was considered by
Vaughan (1990) who found that considerable gains in signal-to-noise ratio were available.
One can now see base stations using polarisation diversity in place of spatial diversity.
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from dual branch receiver diversity will be similar for polarisation diversity
and spatial diversity, but the important difference in the energy-limited con-
text is the possibility to avoid cooperation and the increased processing costs
by simple onboard receiver polarisation diversity. Cui et al. (2004) study the
energy efficiency of array-antenna MIMO communications – nothing hinders
the use of a MIMO scheme over polarised antennas – but consider only a
complex receiver structure with large processing costs. We here assess sim-
pler structures that can be used for polarisation receiver diversity (we study
cooperative MIMO in the next chapter). Moreover, we include the degree of
fading in our analysis since it has a considerable impact on the results.

In this chapter we treat receiver diversity only, but nothing prevents an
extension to more than one transmit branch through a slight modification
of our assay. We study three different reception diversity schemes, namely
maximum ratio combining (MRC), selection diversity (SD) and switching (or
threshold) diversity (SwD).2 These techniques are illustrated in Figure 5.1
where we have applied them to a measurement at 868 MHz. Perfect channel
state information at the receiver is assumed throughout our analysis. The
works on dual branch receiver diversity by Simon and Alouini (1999) and
Abu-Dayya and Beaulieu (1994) contain many of the formulas for bit error
rates and outage probabilities that we use here but expressed in somewhat
different terms. We also generalise their results in some cases.

5.1 Receiver diversity radiated-energy gains

The baseline comparison is between a single-branch (SB) system that uses
one fixed receiver antenna polarisation, and a system where the receiver can
use two differently polarised antennas.3

5.1.1 Nakagami-m channel assumptions

Our Nakagami-m probability assignment for the received envelope, see As-
sumption 2.6, amounts to a gamma assignment for the per-bit signal-to-noise
ratios γ of each receiver branch.4 Here m is the fading figure and γ is the

2Another technique commonly mentioned in this context is equal gain combining. We
omit it here for brevity and note that it in terms of transmission performance reside
between MRC and SD. The performance loss with respect to MRC is typically less than
1 dB (Goldsmith, 2005, p. 216–217)

3For simplicity we study only two branches although triple-polarised antennas can be
used.

4We use, for notational convenience, the signal-to-noise power ratio γP and the signal-
to-noise ratio per bit γ interchangeably in this chapter.
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Figure 5.1: Polarisation diversity gains for non-line-of-sight indoor measure-
ment at 868 MHz. The transmitter used horizontal polarisation, and the
figure displays received signal-to-noise ratios γv and γh for vertical and hori-
zontal receive polarisations. The maximum ratio combining (MRC) scheme
makes an optimum combining of the two branches and therefore achieves the
best signal-to-noise ratio. Selection diversity (SD) follows the best branch,
while switched diversity (SwD) changes branch at a fixed threshold γth.
Consequently, the switched scheme sometimes misses the largest signal-to-
noise ratios. On the other hand, all three schemes avoid the bad conditions
and thereby increase the robustness significantly.

average signal-to-noise ratio per bit. One concern in our comparison is the
reference, single branch, performance when the two polarisation branches
are of different quality.5 Which “reference quality” should we use to as-
sess the diversity gain? The best branch, the worst branch, or an average
thereof? Either way, we might be considered unfair to one scheme or the
other. Another concern regarding different branch qualities is that the analy-
sis becomes much more involved and the resulting expressions unwieldy. We
therefore introduce a simplifying assumption which we invoke for the major
part of our analysis.

5The “quality” is not only determined by the average signal-to-noise ratio per bit γ but
also by the fading degree as given by m.
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Assumption 5.1 Consider two Nakagami-m fading receiver branches (v)
and (h) with respective fading figures mv and mh, and respective average
signal-to-noise ratios per bit γv and γh. Let II denote the following back-
ground information

II ≡ {mv = mh = m,γv = γh = γ, c = 0} , (5.1)

c is the branch correlation coefficient defined in (3.5).

Our measurement results from Chapter 3 support the assumption that c =
0 quite strongly, but does not give support for the assumption on equal
fading characteristics on the two polarisation branches. This condition will
remove the reference-branch problem, and also simplifies the analysis. The
use of Assumption 5.1, which is common in the literature, may lead to over
estimation of the attainable energy savings, and this should be borne in mind.
In Section 5.2.4 we analyse the effects of deviations from Assumptions 5.1 in
terms of different per-bit branch signal-to-noise ratios, γv �= γh.

5.1.2 Radiated-energy gains

The degree of fading and the performance requirements determine the at-
tainable reduction GD in the required energy per bit at the receiver. For
outage and bit-error-rate criteria we will under II define the diversity gain

GD|II(m,Perror) ≡
γSB(m,Perror)

γD(m,Perror)
(5.2)

where γSB and γD are the required average branch-wise signal-to-noise ratios
per bit at the receiver for single branch (SB) and diversity (D) schemes
respectively, m is the Nakagami fading parameter and Perror is the specified
probability of error (typically outage Pout or bit error rate B). Recall from
Chapter 3 and Definition 3.3 that the Nakagami-m channel has an inherent
diversity order m with the corresponding error probability

Perror,SB ∝ γ−m. (5.3)

Based on our analysis in Appendix 5.A we find that the following assumption
is well motivated for the analysis before us.

Assumption 5.2 Under II in Assumption 5.1 the radiated energy gain from
dual branch receiver polarisation diversity is

GD|II(m) = AD(m)
γSB(m,Perror)

γSB(Δm,Perror)
, (5.4)
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Figure 5.2: Bit error rates for coherent and differential binary phase shift
keying. The single branch performance (red solid lines) is shown for
m = 1, 2, 4, while the performance of the diversity schemes are shown for
m = 1, 2. It is evident that maximum ratio combining (black dotted lines),
selection diversity (black dash-dotted lines) and switched diversity (black
dashed lines) achieve almost identical diversity order gains Δ ≈ 2, but with
different array gains that shift their curves horizontally.

where AD(m) ≤ 2 is a diversity scheme dependent array gain and Δ = 2 is
the diversity order gain (see Definition 3.1 and Definition 3.4 respectively).
Here, γSB(m) is the required signal-to-noise ratio per bit for a single branch
receiver operating in Nakagami-m fading.

Figure 5.2 illustrates that Assumption 5.2 holds with good accuracy for max-
imum ratio combining (MRC) and selection diversity (SD), but is slightly
less accurate for switched diversity (SwD), for bit error rates B ≥ 10−6. The
switched diversity scheme does not really attain diversity order gain Δ = 2.

In the numerical results presented in this chapter, which for clarity is
focused on maximum ratio combining(MRC) and switched diversity (SwD),
we will use the following array gains:

Assumption 5.3 The array gain AD in (5.4) is for maximum ratio com-
bining (MRC) and switched diversity (SwD), respectively,

AD,MRC(m) = 2

AD,SwD(m) =
3

4
.

(5.5)
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5.2 Total energy consumption

A diversity receiver can reduce the required transmission energy per bit by
making use of two received signals. The energy cost is that of increased
overhead and/or receiver processing energy. The former can be required
to allow switching between branches, and the latter could be the energy
consumed by an additional receiver chain.

Maximum ratio combining and selection diversity require more receiver
circuitry than a single branch scheme, and the additional receiver chain will
consume processing energy. Let

EPr,D ≡ the diversity processing energy per bit (5.6)

required by the diversity scheme (D). This changes the receiver’s processing
energy to EPr + EPr,D. Switched diversity has the very attractive feature,
at least for small energy-limited sensor nodes, of low hardware complexity.
The switching consumes virtually no energy at all, EPr,D = 0, but in order to
switch from a bad branch the receiver needs overhead bits. Abrupt switches
in the middle of an ordinary packet reception would cause problems (Rustako
et al., 1973). Abu-Dayya and Beaulieu (1994) analyse a scheme where the
received signal-to-noise ratio is compared to the threshold γth only at certain
discrete times, and under such a scheme “re-synchronisation bits” could be
placed in the packets. Let

rD ≡ the fraction of diversity overhead, (5.7)

that is the amount of extra transmission time required.
Incorporation of receiver diversity (D) will save a fraction w of the total

single branch (SB) per-bit energy consumption, where

w =
Etot,SB − Etot,D

Etot,SB

= 1− Etot,D/ERP

Etot,SB/ERP

= 1−
(1 + rD)

[
EPt+EPr+EPr,D+ET,D

EPt+EPr

]
EPt+EPr+ET,SB

EPt+EPr

.

(5.8)

We have in the last step included the increased transmission time through
the diversity rD, and the increased receive processing energy per bit through
EPr,D. By the use of the transmission-to-total-processing ratio ρ′SB in (2.8),
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the receiver-to-transmitter processing ratio α in (2.9), the radiated-energy
gain GD in (5.2) and Mikami’s degradation model in (2.14), we arrive at

w = 1−
(1 + rD)

[
1 + αD

1+α +
ρ′SB

G
1/g
D

]
1 + ρ′SB

=
ρ′SB

1 + ρ′SB

[
1− (1 + rD)

G
1/g
D

− rD + α′D(1 + rD)

ρ′SB

]
,

(5.9)

where g is the amplifier’s efficiency degradation exponent and

αD =
EPr,D

EPt
,

α′D =
αD

1 + α
.

(5.10)

For switched diversity we assume a fraction rSwD > 0 of additional over-
head is required to manage the switching, while the maximum ratio com-
bining is assumed to perform well with rMRC = 0. On the other hand, two
receiver chains are required to do maximum ratio combining and we use
α′MRC > 0, while α′SwD = 0 since the switching energy should be negligible.

Assumption 5.4 Unless otherwise stated, the numerical results are calcu-
lated for

rSwD = 0.03,

rMRC = 0,

α′MRC =
1

6
,

α′SwD = 0.

(5.11)

The switched diversity overhead rSwD corresponds to the use of every 32:nd
bit, on the average, for switching purposes. Depending on the application
and the packet lengths used, this may be reasonable or not. The maximum
ratio processing energy α′MRC amounts to 33 percent extra energy consump-
tion in the receiver. Also here the relevance of this exact figure will depend
on the application and its hardware. We discuss this further in Section 5.2.3.



150 5.2. Total energy consumption

5.2.1 Expected energy saving

Clearly, the benefits from receiver diversity are largest in severe fading and
the radiated energy gain GD depends on the Nakagami fading figure m,
see Figure 5.2. Taking our uncertainty regarding m into account, the best
estimate according to a quadratic loss function is the mean value of the
probability distribution, see (2.69). This expected energy saving w ≡ E(w|I)
is from (5.9)

w =
ρ′SB

1 + ρ′SB

[
1− (1 + rD)E

(
G
−1/g
D |I

)
− rD + α′D(1 + rD)

ρ′SB

]
, (5.12)

where the expectation E
(
G
−1/g
D |I

)
generally must be evaluated numerically.

It is commonplace to use the variance of the distribution as a measure of
accuracy, but in the present case the distribution for w is not symmetric and
the variance can therefore be misleading. Let us instead complement the
mean with the median wmed, see (2.70), the 90th and the 10th percentiles
w90 and w10 to show the uncertainty in w. Thanks to the monotonicity of
the radiated-energy gain GD(m), these values correspond to the median and
the percentiles for our prior for m in (2.85),

w10 ↔ m90 = 8.83

wmed ↔ mmed = 1.88

w90 ↔ m10 = 1.10.

(5.13)

The smaller the fading figure m, the larger the energy saving w.

5.2.2 Energy saving under bit error rate criterion

In Figure 5.3 and Figure 5.4 we display the energy savings for differential
binary phase shift keying (DBPSK) under bit error rate criteria of B = 10−3

and B = 10−6 respectively. To begin with, we note that the behaviour is
quite similar to the power control (channel inversion) scheme of Section 4.2;
the bit error rate has large influence and there is a significant uncertainty
in w stemming from the unknown fading figure m with its impact on the
transmission energy per bit. Regarding the choice between maximum ratio
combining (MRC) and switching diversity (SwD) there are two characteris-
tics of importance.

• The processing penalty of switching diversity is considerably smaller
than for maximum ratio combining. Hence, the penalty at small transmission-
to-total-processing ratio ρ′SB is smaller for the former of the two, leading
to a smaller maximum energy loss.
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Figure 5.3: The fraction w of energy saved by exploitation of receiver po-
larisation diversity for a target bit error rate B = 10−3. The amplifier
efficiency degradation exponent g = 2.

• The diversity performance of maximum ratio combining is superior to
that of switching diversity and the reward comes at large transmission-
to-total-processing ratios ρ′SB. Then, the consistent performance out-
weighs the larger “investment” in terms of processing energy. Switched
diversity has significantly larger spread and even at large transmission-
to-total-processing ratios ρ′SB the degree of fading has significant im-
pact.

For transmission-to-total-processing ratios ρ′SB > 1 both schemes typically
provide substantial expected energy savings. This is due to the poor perfor-
mance of the single branch system in fading environments. Note that of the
existing radios we consider, it is only the CC1000 that has an undisputable
advantage of receiver diversity.

Remark 5.1 Our results pertain to the use of a fixed link margin which is
adjusted to the fading; it can be as much lower under a diversity scheme as
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Figure 5.4: The fraction w of energy saved by exploitation of receiver po-
larisation diversity for a target bit error rate B = 10−6. The amplifier
efficiency degradation exponent g = 2.

the radiated-energy gain GD quantifies. Channel inversion through transmit
power adaption is not considered in the present calculations. It is an alter-
native, or a complement, to receiver diversity. We discuss this choice briefly
in Section 5.3.

5.2.3 Maximum processing energy cost

This far, we have compared the diversity techniques with the single branch
approach, but after consideration of the results presented in Figure 5.3 and
Figure 5.4, a question presenting itself is “How much additional processing
energy can we afford to pay for maximum ratio combining?” Let us compare
the total expected energy consumption of the two diversity approaches,

(1 + rSwD)
(
1 + ρ′SBE

(
G
−1/g
SwD |I

))
= 1 + α′MRC + ρ′SBE

(
G
−1/g
MRC|I

)
(5.14)
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Figure 5.5: Maximum additional normalised processing energy α′
MRC of

maximum ratio combining. The left panel corresponds to B = 10−3 and
the right panel corresponds to B = 10−6. The dashed curve corresponds to
the single-branch receiver, while the solid curves correspond to the switched
diversity receiver. The amplifier efficiency degradation exponent g = 2.

where the left hand side is the (normalised) energy consumption of switched
diversity while the right hand side is the counterpart for maximum ratio
combining. Solving (5.14) for α′MRC, see (5.10) and (5.11), we obtain

α′MRC = rSwD +
[
(1 + rSwD)E

(
G
−1/g
SwD |I

)
− E

(
G
−1/g
MRC|I

)]
ρ′SB. (5.15)

By the use of rSwD = 0 and GSwD = 1, we obtain the single branch
performance from and can thereby find the maximum α′MRC with respect
to the single branch receiver. In Figure 5.5 we show the boundaries be-
tween switched diversity and maximum ratio combining for different rSwD,
and also the boundary between maximum ratio combining and a single
branch receiver. Remember, as a reference, that we previously assumed that
α′MRC = 1/6 ≈ 0.17. From Figure 5.5 we draw the following conclusions.

• The allowed relative processing cost of maximum ratio combining, with
respect to a single branch scheme, climbs steadily and is surprisingly
large for transmission-to-total-processing ratios ρ′SB > 2/3. Then, the
additional processing can approach half of the total, transmit and re-
ceive, single-branch processing, that is α′MRC = 1/2.

• Maybe somewhat counter intuitively, the comparison with switched
diversity shows that maximum ratio combining can afford more rel-
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ative processing under the milder requirement B = 10−3. This is
because switched diversity provides a large radiated energy gain under
the stricter requirement B = 10−6, but this decreases significantly for
B = 10−3 and then the more consistent performance of maximum ratio
combining pays off.

5.2.4 Deviations from the idealised assumptions

We have so far used Assumption 5.1 on equal branch fading characteristics
to simplify the analysis and the choice of the reference single-branch param-
eters. Differences between the two polarisation branches’ average signal-to-
noise ratios γv and γh, as well as positive correlations between the branches,
have been ignored. If present, both of these effects will generally reduce
the achievable diversity gains (Abu-Dayya and Beaulieu, 1994, Simon and
Alouini, 1999). In the extreme cases of perfectly correlated branches, or
infinitely different branch signal-to-noise ratios γv/γh → ∞, the diversity
schemes reduce to the single branch scheme since no diversity remains to
exploit.

Average signal-to-noise ratios. To begin with,we study the impact of
different average branch signal-to-noise ratios, but still under independent
probability distributions, and in the end we shortly discuss branch correla-
tions. We use equal fading figures mv = mh = m and restrict the analysis to
differential binary phase shift keying. Nothing is changed in the maximum
ratio scheme with respect to weighting and summing of the branch signals,
it is only the probability distribution for the resulting signal-to-noise ratio
γMRC that changes. The same holds also for the switched diversity scheme,
except that the bit-error-rate optimal threshold γth will change and is no
longer available. Let us assume for convenience that the single branch sys-
tem uses the vertical polarisation and define the horizontal-to-vertical branch
ratio

ν ≡ γh

γv

. (5.16)

If ν < 1, then the alternative branch h has a poorer average quality, and
provides less average help than when ν = 1. But it can still help significantly
when the vertical-branch fading dips are deep, see for instance Figure 5.1.

Remark 5.2 Even if the branches are static, m → ∞, a single branch re-
ceiver can be stuck with the worst branch while a switched diversity receiver
can choose the best one for a negligible energy cost. Hence, energy gains –
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Figure 5.6: Expected energy savings for a horizontal-to-vertical branch ratio
ν = 0.1, that is a 10 dB difference in the branches’ average signal-to-noise
ratios. Target bit error rate B = 10−3.

and robustness improvement – can actually be achieved even in non-fading
environments.

In Figure 5.6 and Figure 5.7 we show the expected energy saving w, accom-
panied by median and percentiles, for B = 10−3 and B = 10−6 respectively.
All these results are found by numerical methods.

• As expected, the difference in branch signal-to-noise ratio decreases the
benefits from receiver diversity. This is especially true for small degrees
of fading, mild bit error rate requirements and switching receiver diver-
sity, while the impact is less pronounced for maximum ratio combining
in severe fading. In severe fading, the dips can be detrimental and any
help is good help, but in less severe fading the risk is larger that the
alternative branch is not above the dips.

• A distinctive effect is that the worst-case performance is significantly
degraded for large transmission-to-processing ratios, because the chances
to improve a less severely fading channel – larger fading figure m –
diminishes when the alternative branch has a much smaller average
gain. The uncertainty in w is increased substantially in this region for
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Figure 5.7: Expected energy savings for a horizontal-to-vertical branch ratio
ν = 0.1, that is a 10 dB difference in the branches’ average signal-to-noise
ratios. Target bit error rate B = 10−6.

both maximum ratio combining and switched diversity; note that the
10th percentile w10 for switched diversity is virtually unaffected by the
transmission-to-processing ratio.

Correlations. Regarding branch correlations we refer to the results by Si-
mon and Alouini (1999, Fig. 4 and Fig. 5). Our conclusion based on their
results, which include branch correlation coefficients between zero and 0.9, is
that strong correlation has about the same impact as unequal branch qual-
ities. The negative effects add up to larger overall penalty. The presence
of an 0.9 branch correlation reduces, judging from the results by Simon and
Alouini (1999), the gain by approximately 5 dB. Equivalently, horizontal-to-
vertical ratio ν = 0.1 yields a gain which is approximately 5 dB smaller than
if ν = 1. This gives us a coarse view of the impact of branch correlations
on the energy efficiency of receiver diversity. Remember however the re-
sults in Chapter 3 which indicate that polarisations branches are practically
uncorrelated; we need not worry too much about strong correlations.
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5.3 Concluding remarks

Similarly to power control, receiver diversity will save no or little energy
for transmission-to-total-processing ratios ρ′SB < 0.2, but will become very
attractive, from a total-energy perspective, for larger transmission-to-total-
processing ratios ρ′SB > 1/2. Some of our reference nodes shown in Fig-
ure 5.3 and Figure 5.4 would perhaps benefit from switched diversity but
not maximum ratio combining; only the CC1000 radio is a candidate for the
latter technique. Let us now consider transmission-to-total-processing ratios
ρ′SB > 1/2.

Channel inversion or polarisation diversity. Channel inversion and
switched receiver diversity seem to provide similar energy savings in fading
channels and the question then is which one to use. Our answer is: both. The
use of receiver diversity reduces the dynamic range of the channel inversion
scheme and could probably simplify the transmit power control, while the
diversity schemes based on selection and switching relies on slow adjustment
of the transmit power to reap the possible energy gains. Moreover, channel
inversion can not replace receiver diversity in all respects. For instance, if the
fading is very slow and one branch is in a dip, then the diversity receiver can
likely switch out of the problem while the inversion scheme has to continue
to struggle on high power. Diversity increases robustness.

You get what you pay for. Switched diversity carries the lightest over-
head burden but does not achieve the consistent diversity performance that
maximum ratio combining does at its larger processing cost. There is how-
ever a soft threshold around the transmission-to-total-processing ratio ρ′SB =
1 at which maximum ratio combining becomes preferable to switched diver-
sity.

Hardware complexity for MRC. Maximum ratio combining requires
co-phasing of the branch signals, even if the subsequent detection is non-
coherent. Therefore, as we did in Section 4.4.3 when considering adaptive
MQAM, it could be motivated to study the increased processing cost of the
coherent combining with respect to a fully non-coherent single branch (or
switched) receiver. The maximum ratio combining processing energy α′MRC

will then increase, possibly by significant amounts, and might render the
MRC approach much less attractive in spite of its consistent performance.
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Who is paying the bill? We have in this chapter considered the total
energy consumption of a transmission, but the saving is actually achieved at
the transmitter while largely paid for by the receiver. In a network where
all nodes transmit and receive approximately equally often, this “load trans-
fer” does not matter in the long run. But in a data gathering network –
especially a single-hop network – most of the transmissions are from sensor
nodes far away towards the central node. Clearly, nodes with no energy
limitation should use maximum ratio combining to alleviate the burdens of
the large mass of energy-limited sensor nodes sending data to them. In case
some nodes are less energy-constrained than others – for instance in a hetero-
geneous network with some nodes capable of energy harvesting – the same
approach could be used. The simpler sensor nodes can use switched diversity
to increase robustness. These issues are further discussed in Chapter 8 when
we study network sensing capacity.

Combine channel inversion, error correction and polarisation diver-
sity. Neither channel inversion or switched receiver diversity seem suited
to counter fast fading, but this can be handled by the use of error correc-
tion. Our conclusion is that the combination of power control and receiver
diversity to counter slow fading (see Definition 2.1 on page 30 for definitions
of slow and fast fading), and error correcting codes to counter fast fading
and noise is attractive and can be implemented successfully without great
complexity (simple block codes, coarse grained power control and a suitable
choice of receiver diversity).
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Appendix 5.A Diversity schemes details

All computations in this appendix have been carried out with the aid of Mathe-
matica 6 (Wolfram Research Inc., 2007). For brevity, tedious derivations are not
put in print here. Instead we focus on the most important results.

Appendix 5.A.1 Maximum ratio combining

Maximum ratio combining (MRC) amounts to summing the (co-phased) branch
signals after weighting them so that the resulting signal-to-noise ratio γMRCc of the
combined signals is maximised. The optimal weights are the branches’ individual
signal-to-noise amplitude-ratios

√
γv and

√
γh, and that the resulting signal-to-noise

ratio is simply the sum of the branches’ signal-to-noise ratios (Goldsmith, 2005, p.
214). The average signal-to-noise after combining is therefore

γMRCc = γv + γh. (5.17)

Under Assumption 5.1 this becomes γMRCc|II = 2γ; the 3 dB array gain of maximum
ratio combining. This gain is independent of the nature of the fading.

There is no closed form solution for the distribution for γMRCc in the general case
with different fading parameters for the two branches. However, if II is true, then
we obtain a gamma probability distribution also for γMRCc (Wolfram Research Inc.,
2007) and

mMRCc|II = mv +mh (5.18)

Under Assumption 5.1, mv = mh = m and therefore mMRCc|II = 2m. In addition
to the array gain (5.17) we thus obtain a diversity order gain

ΔMRC = 2, (5.19)

which is exact.6

Radiated-energy gain. Dual branch maximum ratio combining achieves ac-
cording to (5.17) and (5.18) an array gain AD(m) = 2 and a diversity order gain
Δ = 2, see Definition 3.1 and Definition 3.4. It therefore has the exact radiated-
energy gain

GMRC|II = 2
γSB(m, Perror)

γSB(2m, Perror)
. (5.20)

Appendix 5.A.2 Selection diversity

A selection diversity (SD) receiver monitors the branches’ signal-to-noise ratios
and selects the one with the best instantaneous signal-to-noise power ratio. The
instantaneous “combined” signal-to-noise ratio is, ideally,

γSDc = max(γv, γh), (5.21)

6In fact, the result in (5.18) holds also under the weaker condition that mv/γv = mh/γh

(Wolfram Research Inc., 2007).
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see Figure 5.1. By the use of (2.109) on page 70 and the assumption of independent
branch distributions we have

PSD(γSDc < γ′|I) =

⎡⎣1− Γ
(
mv,

mv

γv
γ′
)

Γ(mv)

⎤⎦⎡⎣1− Γ
(
mh, mh

γh
γ′
)

Γ(mh)

⎤⎦ . (5.22)

This is the product of the independent probabilities that each branch is below γ′.
Differentiation with respect to γ′, and a subsequent substitution γ′ → γSD, yield
the probability density function

p(γSDc|I) =

⎡⎣1− Γ
(
mv,

mv

γv
γSD

)
Γ(mv)

⎤⎦ mmh

h

Γ(mh)γ
mh

γmh−1
SD e−

mh
γ γSD

+

⎡⎣1− Γ
(
mh, mh

γh
γSD

)
Γ(mh)

⎤⎦ mmv
v

Γ(mv)γ
mv

γmv−1
SD e−

mv
γ γSD .

(5.23)

Averaging (5.23) over γSDc results in the expected signal-to-noise ratio

γSDc = γv +
(−1)−mvβ

(
−mvγh

mhγv
, mv + 1,−mv − mh

)
Γ(mv +mh + 1)γv

mvΓ(mv)Γ(mh)

+ γh +
(−1)−mhβ

(
−mhγv

mvγh
, mh + 1,−mv − mh

)
Γ(mv +mh + 1)γh

mhΓ(mv)Γ(mh)

(5.24)

This simplifies under Assumption 5.1,

γSDc|II = γ

(
2 + 4

(−1)−mβ(−1, 1 +m,−2m)Γ(2m)

Γ2(m)

)
. (5.25)

The bracketed expression – the array gain AD(m) corresponding to Definition 3.1
– is monotonically decreasing from ASD = 3/2 when m = 1 to ASD = 1 when
m → ∞. The array gain is smaller than for maximum ratio combining due to the
fact that only one branch at a time is used.

Selection diversity error probability

Under Assumption 5.1 we obtain from (5.22) the outage probability

PSD(γSDc < γout|I) = P 2
SB(γ < γout|I), (5.26)

where γ is the branch-wise signal-to-noise ratio. By the use of the series expansion
in (2.110), we obtain

Pout,SD|II ∝ γ−2m, (5.27)

a diversity order gain Δ = 2 as given by Definition 3.4.
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Regarding bit error rates we first note that basically all modulations have at
worst exponential error behaviour over a static channel for large signal-to-noise
ratios per bit; B ≤ C1e

−C2γ for some constants C1 > 0 and C2. Specifically for
differential binary phase shift keying we have

Bsta,DBPSK =
1

2
e−γ . (5.28)

Assuming perfect receiver channel state information we can average the static chan-
nel bit error rate over the probability density function in (5.23) with the aid of
Mathematica 6 (Wolfram Research Inc., 2007), giving the result

BDBPSK|II =
(

m

m+ γ

)m

−
Γ(2m) 2F1

(
m, 2m;m+ 1;−m+γ

m

)
mΓ(m)2

. (5.29)

A series expansion for γ  m gives

BDBPSK|II ∝ γ−2m. (5.30)

For all modulations with exponential error characteristics over a static channel this
relation will hold.

The selection scheme thus achieves, under Assumption5.1, a diversity order gain
Δ = 2,

Perror ∝ γ−2m, (5.31)

for both outage and bit error probabilities.

Radiated-energy gain. With a diversity order gain Δ = 2 and an array
gain AD(m) corresponding to (5.25) the radiated-energy gain of selection diversity
becomes

GSD|II = AD(m)
γSB(m, Perror)

γSB(2m, Perror)
, (5.32)

where AD(m) ≤ 3/2.

Appendix 5.A.3 Switched diversity

The switched diversity scheme addresses the hardware complexity problem by
switching a single receiver chain between, in the present case, two different anten-
nas. Switches occur when the current signal-to-noise ratio drops below a predefined
threshold value γth.7 Deep fades are thereby avoided since the other branch is likely
better, but the scheme will not always use the best branch. See Figure 5.1 for an
illustration.

7It is typically assumed that the noise level is the same for both branches and the
threshold value can be defined in terms of total received signal power. This simplifies the
implementation.
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Switching rule. Several switching rules can be implemented, but we here anal-
yse the switching strategy outlined by Abu-Dayya and Beaulieu (1994, eq. (3a)
and (3b)). Let

Vt ≡ Vertical polarisation is used at time t

Ht ≡ Horizontal polarisation is used at time t
(5.33)

and let γvt and γht denote the signal-to-noise ratios at time t. The receiver’s choice
can now be expressed in logic form,8 and it will at any time t choose

Ht iff Ht−1(γht ≥ γth) + Vt−1(γvt < γth) (5.34)

Vt iff Vt−1(γvt ≥ γth) +Ht−1(γht < γth) (5.35)

where “iff” is shorthand for “if and only if”. The resulting signal-to-noise ratio γSwDc

thus equals γvt when Vt is true and γht when Ht is true.
From the switching rule in (5.33) and the rules of probability theory it follows

that the probability for the resulting signal-to-noise ratio γSwDc to be below γ′ is

P (γSwDc < γ′|I) = P (Vt(γvt < γ′)|I) + P (Ht(γht < γ′)|I)
= P (Vt|(γvt < γ′)I)P (γvt < γ′|I) +

P (Ht|(γht < γ′)I)P (γht < γ′|I)
= {Switching rule} (5.36)

= [P (Vt−1(γvt ≥ γth)|(γvt < γ′)I)+

+ P (Ht−1(γht < γth)|(γvt < γ′)I)]P (γvt < γ′|I) +
[P (Ht−1(γht ≥ γth)|(γht < γ′)I)+

+ P (Vt−1(γvt < γth)|(γht < γ′)I)]P (γht < γ′|I).

There will now be a special case, namely the case γth ≥ γ′, when some probabilities
are zero. Let us begin with this special case and use I ′ = (γth ≥ γ′)I.

P (γSwDc < γ′|I ′) = P (Ht−1(γht < γth)|(γvt < γ′)I)P (γvt < γ′|I) +
P (Vt−1(γvt < γth)|(γht < γ′)I)P (γht < γ′|I)

= P (γht < γth|Ht−1(γvt < γ′)I)P (Ht−1|(γvt < γ′)I)

×P (γvt < γ′|I) +
P (γvt < γth|Vt−1(γht < γ′)I)P (Vt−1|(γht < γ′)I)

×P (γht < γ′|I)
= {Independence assumptions}
= P (γht < γth|I)P (Ht−1|I)P (γvt < γ′|I) +

P (γvt < γth|I)P (Vt−1|I)P (γht < γ′|I). (5.37)

8AND is represented by a logical product AB, while OR is represented by a logical
sum A + B.
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If γth < γ′ we must add the terms that cancelled in the previous case. Let us use
I ′′ = (γth < γ′)I.

P (γSwDc < γ′|I ′′) = P (γ < γ′|I ′) +
P (Vt−1(γvt ≥ γth)|(γvt < γ′)I)P (γvt < γ′|I) +
P (Ht−1(γht ≥ γ′)|(γht < γ′)I)P (γht < γ′|I)

= P (γ < γ′|I ′) +
P (Vt−1|(γth ≤ γvt < γ′)I)P (γvt ≥ γth|(γvt < γ′)I)

×P (γvt < γ′|I) +
P (Ht−1|(γth ≤ γht < γ′)I)P (γht ≥ γth|(γht < γ′)I)

×P (γht < γ′|I)
= {Independence assumptions}
= P (γ < γ′|I ′) +

P (Vt−1|I)P (γth ≤ γvt < γ′|I) +
P (Ht−1|I)P (γth ≤ γht < γ′|I). (5.38)

To move forward we need to determine P (Vt|I) and P (Ht|I). They will follow the
same type of recurrence equation, namely

P (Vt|I) = P (γvt ≥ γth|Vt−1I)P (Vt−1|I) + P (γht < γth|Ht−1I)P (Ht−1|I)
= {Independence assumptions}
= P (γvt ≥ γth|I)P (Vt−1|I) + P (γht < γth|I)(1− P (Ht−1|I)).

Solving for the stationary solution we set P (Vt|I) = P (Vt−1|I) and obtain

P (Vt|I) =
P (γht < γth|I)

P (γht < γth|I) + P (γvt < γth|I)
. (5.39)

Identically, for Ht we have

P (Ht|I) =
P (γvt < γth|I)

P (γvt < γth|I) + P (γht < γth|I)
. (5.40)

Collecting (5.36)-(5.40) in one expression we finally have

P (γSwDc < γ′|I) =
1

P (γvt−1
< γth|I) + P (ht−1 < γth|I)

×[
P (γht−1

< γth|I)P (γth ≤ γvt < γ′|I) +
P (γvt−1

< γth|I)P (γth ≤ γht < γ′|I) + (5.41)

P (γht−1
< γth|I)P (γvt

< γth|I)P (γht < γ′|I) +
P (γvt−1

< γth|I)P (γht
< γth|I)P (γvt < γ′|I)

]
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where it is understood that P (γth ≤ γvt < γ′|I) = 0 and P (γth ≤ γht < γ′|I) = 0
when γth ≥ γ′. By the use of (2.109) on page 70, each of the probabilities in (5.41)
can be expressed as a Nakagami single branch outage probability.

The probability density function p(γSwDc|I) for γSwDc is found by differentiation
of (5.41), but the expression becomes quite large and we choose not to display it
here since no insights are gained from it. However, the average signal-to-noise ratio
can under Assumption 5.1 be expressed as

γSwDc|II = γ

⎛⎝1 +
(
mγth

γ

)m

e−m
γth
γ

Γ (1 +m)

⎞⎠ . (5.42)

The bracketed factor has its maximum for γth = γ, and this maximum is 1 +
mm exp(−m)/Γ(1 +m) > 1. However, this does not imply that we should use the
threshold γth = γ. The performance metrics – bit error rate or outage probability –
are typically highly non-linear functions of γth and in general the optimum threshold
depends both on m, γ and the performance requirement. An example is given in
(5.46) below.

Switched diversity error probability

Observe that if we insert γth = γ′ in (5.41), the above expression reduces to

P (γSwD < γ′|(γth = γ′)I) = P (γvt
< γ′|I)P (γht < γ′|I)

= P (γSD < γ′|I), (5.43)

see (5.26). Consequently, from an outage point of view we should follow the intuition
telling us that the threshold should be at the outage level since we never would like
to follow one branch down into a fading dip without trying the other branch. Since
the outage performance of switched diversity equals that of selection diversity we
have from (5.27) that

Pout,SwD|II ∝ γ−2m. (5.44)

The average bit error rate achieved with the switching diversity is found from
averaging the static channel bit error rate over p(γSwD|I), and under Assumption 5.1
the obtained expression simplifies to

BSwD,DBPSK|II =

(
m

m+γ

)m (
Γ(m)− Γ

(
m, mγth

γ

)
+ Γ

(
m, γth(m+γ)

γ

))
2Γ(m)

. (5.45)

The optimum threshold γth is obtained by setting the derivative to zero and solving
for γth;

γth,opt|II = m ln

(
m+ γ

m

)
. (5.46)

But even with this optimum threshold, a series expansion of (5.45 for γ  m
reveals that switched diversity does not achieve a diversity order gain of two, Δ < 2
(Wolfram Research Inc., 2007).
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It turns out that switched diversity does not achieve the full diversity order gain
of two. On the other hand, as illustrated in Figure 5.2(a) and Figure 5.2(b), the gain
in diversity order is close to Δ = 2 for bit error rates down to B = 10−6. Within
this range we will therefore assume that Δ = 2 for switched diversity, bearing in
mind that this is not true if harder error requirements are posed.

Received-energy gain. Although it is possible to attain an array gain AD(m) >
1 with a switched receiver, see (5.42), adapting the threshold to the performance
requirement will sacrifice part of this array gain to improve the error behaviour,
see Figure 5.2(a) and Figure 5.2(b). Our approximate radiated-energy gain is

GSwD|II = ASwD(m)
γSB(m, Perror)

γSB(2m, Perror)
, (5.47)

where AD(m) < 1.





Chapter 6
Multi-hop Communication

IN THE research literature on wireless sensor networks one assumes al-
most without exception that the networks will have a multi-hop structure

in which data is forwarded hop-by-hop toward the final destination. This
structure is not seldom motivated by its alleged energy efficiency stemming
from the fact that the required (average) transmission energy per bit in-
creases super-linearly with distance, giving us the chance to save energy by
forwarding data over many short hops. More specifically, under the common
power-law propagation loss model which we have adopted through Assump-
tion 2.8 on page 30, the required radiated energy per bit scales like

Erad ∝
(

d

d0

)κ

. (6.1)

The model states that the required energy per bit is proportional to the
κth power of the relative distance d/d0. In (6.1), κ is the environment-
dependent propagation loss exponent which typically is in the range [2, 5],
see Section 2.4.2 or Section 2.B.2. It hence seems possible to reduce the
transmission energy by a factor Nκ/N = Nκ−1 by doing N short hops of
length d/N instead of one long hop. Judging from this the energy per bit
could be reduced to almost negligible values. For instance, if κ = 4 and
N = 10 the reduction in transmission energy is 104−1 = 1000; a promising
thousand-fold reduction.

Our obvious objection to the above line of reasoning is that it ignores pro-
cessing energy, and the inclusion of processing energy unfortunately erases
most of the possible energy savings from multi-hopping. Inspired by Min
and Chandrakasan (2003), who put the energy efficiency of multi-hopping
in doubt by an insightful example, we have previously shown that sensor
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networks will rarely save energy through the use of multiple hops (Björnemo
et al., 2006). We found that the propagation losses had to exceed the
transmission range of current sensor node radios in order to motivate multi-
hopping energy-wise, and we thereby confirmed the suspicion raised by Min
and Chandrakasan (2003) in greater generality. Zorzi and Rao (2004) and
Tralli (2005) both studied the energy consumption for combined multi-hop
and error correcting codes. Their analyses include transmission processing
costs and show how the total energy consumption varies with end-to-end
transmission distance.

In this section we further emphasise the impact of processing energy by
focussing on the transmission-to-processing ratio ρ in (2.7). Thereby we
remove the impact all system parameters that affect the transmission dis-
tance, but not the transmission-to-processing ratio, and gain better insights
into the fundamental trade-off, see Example 2.1. We also extend previous
analyses in various respects and include

“Inverse diversity”. An effect in multi-hop communication which is some-
times overlooked is what we in lack of a better word will term “inverse
diversity”: several consecutive transmissions increases the end-to-end
probability of error, see Definition 6.1 below. We include this effect
in our analysis and make use of the interpretation of the Nakagami
fading figure m as the channel’s inherent diversity order as given by
Definition 3.3 on page 75.

Diversity. In Chapter 5 we found that polarisation receiver diversity offers
an possibly processing-cheap way to reduce channel variations. Consid-
ering the inverse diversity effect of multi-hopping, the use of diversity
reception seems particularly attractive here.

Error correcting codes. As all other techniques that save transmission
energy, the multi-hop alternative must overcome the increased pro-
cessing costs before becoming attractive. Now, error correcting codes
can be become attractive at smaller transmission-to-processing ratios
than multi-hopping and we therefore include adaptive BCH codes (Sec-
tion 4.3, page 114) in our analysis.

Amplifier efficiency degradation. The attainable energy gains are highly
dependent on the efficiency characteristics of the power amplifier, and
the multi-hop gain from shorter transmissions, indicated by (6.1), is di-
minished by amplifier back-off degradation. We here include this effect
through the model by Mikami et al. (2007), see (2.14) on page 23.
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Packet aggregation and data fusion. A multi-hop approach offers pos-
sibilities to aggregate packets to reduce overhead, and to compress
redundant data to reduce packet size. These techniques can add to
the transmission-wise benefits from shorter hops, and we study their
impact on the overall energy efficiency.

Uncertain relay node positions. In the end of this chapter we include
the important impact of the position of the relay node; it will most
likely be situated in a non-optimal position with respect to multi-hop
transmission energy reduction.

Remark 6.1 In the previous chapters we have mainly used the transmission-
to-total-processing ratio ρ′ of (2.8), but here we will also use the transmission-
to-processing ratio ρ of (2.7). This is because we sometimes need to distin-
guish between the processing energy of the destination node and the processing
energy of the relaying nodes.

Unless otherwise stated, to simplify comparisons across chapters the nu-
merical results are presented for a receiver-to-transmitter processing ratio
α = 1 so that the transmission-to-processing ratios fulfill ρ = 2ρ′, see As-
sumption 2.2 on page 22. This has to be kept in mind when interpreting the
results. However, all the equations are kept general.

Assumptions. To simplify the analysis we initially assume the following:

1. Equidistant multi-hopping, that is N hops of equal length d/N in place
of a single hop of length d. We study irregular distances in Section 6.5.

2. Homogeneous transmission environment in the sense that the same
propagation loss exponent κ and Nakagami fading figure m can be
used for all hop lengths.

3. Non-shadowed transmissions. Shadowing effects are treated in Chap-
ter 8.

Remark 6.2 Equidistant hopping is seldom an alternative in practice: nodes
will rarely be placed carefully at regular distances, and even if they were it
need not mean that a relay node is present at the midpoint between source
and destination. Equidistant hopping is the most favourable scenario with
respect to multi-hop transmission energy.
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Criterion. It is not self-evident what the “right” definition of energy effi-
ciency is when considering a sensor network, and in the multi-hop scenario it
is sometimes relevant to study the energy consumption of the most heavily
loaded node in addition to the total energy consumption. The reason is that
some nodes can suffer from a much larger communication load than others
due to their position close to the central sink (or in any area that for some
reason is a communication “hot spot”). So even if a scheme minimises the
total energy per information bit it could be detrimental to the network’s op-
eration if it quickly drains the batteries in certain areas, and thereby causes
blind spots or network partitioning. The issue of load imbalance in the multi-
hop context has been studied by for instance Perillo et al. (2004) and Olariu
and Stojmenovic (2006), and we also included that aspect in our previous
work (Björnemo et al., 2006). However, we defer this discussion to Chapter 8
where we delve deeper into the definition of a network wide energy resource
metric. Presently we focus on the saving in total energy consumption,

w ≡ Etot,1H − Etot,NH

Etot,1H
, (6.2)

where 1H denotes single-hop and NH denotes N consecutive hops.

6.1 The transmission gain of shorter hops

Before we concentrate on the performance criterion in (6.2), we need to
quantify the radiated-energy gain GNH of the N -hop approach. Consider
therefore the division of one hop (1H) into N equidistant hops (NH). Due
to what we – in lack of a better word – have termed “inverse diversity”, the
per-hop target error probability must be smaller for the multi-hop scheme,
Perror,NH < Perror,1H. Here Perror typically denotes bit errors or outage.

Lemma 6.1 Consider N successive transmissions – N hops – each with an
assigned error probability P independent of the other transmissions. The
end-to-end error probability is then

P (N) = NP +O((NP )2). (6.3)

Proof: See Appendix 6.A.

As a first order approximation, valid for NP 
 1, we should consequently
aim for a per-hop error probability of Perror,NH = Perror,1H/N to attain an
overall error probability B1H over N hops.
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Definition 6.1 Inverse diversity is the N fold increase in end-to-end error
probability from Perror to NPerror, given in Lemma 6.1, caused by N consec-
utive transmissions of equal error probability.

From an energy point of view, the increased per-hop requirement will
have quite different impact under different channel conditions. We quantify
this by the use of the Nakagami-m fading model; this model’s m parameter
serves the presently useful purpose of quantifying the diversity order of the
channel.

Lemma 6.2 Consider N equidistant hops, each of length d/N , replacing a
single hop of length d, and assume that the first order approximation

Perror(N) = NPerror

to (6.3) holds to with an error |ε| < δ, where δ > 0 is a small constant. To
ensure equal end-to-end error probabilities for single-hop and multi-hop in
a Nakagami-m fading environment, the average hop-wise received signal-to-
noise ratio per bit must fulfill

γNH ≥ N
1
m γ1H, (6.4)

where γ1H and and γNH are the average received signal-to-noise ratios per bit
for the single hop and each multi-hop respectively.

Proof: See Appendix 6.B.

So, while the power-law propagation loss model in (6.1) assures that
multiple hops can reduce the radiated energy per bit, according to Lemma 6.2
the received energy per bit must be larger in the multi-hop case; the power-
law gain is counteracted by the inverse diversity effect.

Theorem 6.1 Let Erad,NH be the radiated energy per bit and hop for an
equidistant N -hop scenario. Consider the propagation loss model in (6.1)
and a communication error performance given by (2.26) for a Nakagami-m
channel. Assume that the N -hop error probability is given by

Perror(N) = NPerror(1)

according to Lemma 6.1. The reduction in radiated energy per bit and hop
achieved by using N equidistant short hops in place of a single long hop is
then

GNH ≡ Erad,1H

Erad,NH

= Nκ− 1
m . (6.5)
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Proof: See Appendix 6.C.

Theorem 6.1 show the combined effect of shorter hops, reducing the per-hop
energy by a factor Nκ, and inverse diversity, increasing the per-hop energy
by a factor N

1
m . In effect, the impact of inverse diversity is a reduction in

propagation loss exponent from κ to κ − 1/m. For Rayleigh fading, m = 1,
this effect is significant.

Yet another effect that counteracts the power-law energy gains of multi-
hop is the degradation in power amplifier efficiency when output power is
reduced.

Corollary 6.1 Under the power amplifier efficiency degradation model (2.14),
the use of N equidistant hops leads to the transmission-to-processing ratio

ρNH = N
1/m−κ

g ρ1H, (6.6)

where g is the degradation exponent and

ρ =
ET

EPt

as given by (2.7) on page 21.

Proof: See Appendix 6.D.

We have in (6.6) an important relation between transmission-to-processing
ratios that neatly includes the number of hops N , the degree of fading m and
the effects from inverse diversity, the propagation loss exponent κ and the
power amplifier back-off degradation parameter g. In terms of transmission
energy, the expression in (6.6) shows quantitatively how much large N and κ
speak in favour of multi-hop, and how much large g and m speak against its
use. Observe that inclusion of inverse diversity and amplifier degradation has
large impact and decrease the “effective propagation loss exponent” from κ
to (κ− 1/m)/g. For instance, a large κ = 5 can be reduced to (5− 1/1)/2 =
2 in Rayleigh fading m = 1 for g = 2. Indeed, because κ > 1/m, the
transmission cost of multiple hops vanishes as N → ∞, but at a rate that
can be significantly slower than indicated by reasoning from (6.1) only. The
effects of m and g are therefore important to include and we will base our
assessment on (6.6).

Earlier we have studied power control and diversity approaches to the
reduction of transmission energy. In particular, we found that dual-branch
receiver diversity (D) effectively can double the Nakagami fading figure;
mD = 2m. This diversity order gain can be an important ingredient in
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multi-hop schemes due to the inverse diversity effect evident in (6.6). With
a sufficient degree of accuracy we can simply use mD = 2m when we con-
sider multi-hopping between nodes equipped with dual-branch diversity re-
ceivers (the additional processing costs are subsumed in the transmission-to-
processing ratio as they affect multi-hop and single-hop equally).

It is straightforward to extend the analysis to the choice between N and
K < N hops by repeating the above derivation.

Corollary 6.2 Comparing K equidistant hops with N equidistant hops un-
der the power-law model (6.1) and Nakagami-m fading, the transmission-to-
processing ratios relate as

ρNH =

(
N

K

) 1/m−κ
g

ρKH. (6.7)

Proof: Follows immediately from Corollary 6.1.

This generalised expression will be used for instance when considering the
optimum number of hops in conjunction with adaptive error correction cod-
ing.

6.2 Uncoded multi-hop

Consider a node, here called S, that has data to send to node R, which can
be another sensor node or the central sink depending on the situation. We
initially assume that all transmissions are uncoded fixed rate transmissions
with a transmit power level that is adjusted to achieve a given end-to-end
error rate (bit error or outage) over a Nakagami-m channel.1 The single hop
scheme is our reference scheme and we determine how large its transmission-
to-processing ratio ρ1H must be to motivate multiple hops.

1We assume a link margin approach for simplicity, and the adjustment of the power
level is hence not aimed at dynamic channel inversion, only a static initial setting.
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6.2.1 Energy consumption in a one-dimensional network

The use of N hops saves according to (6.2) an energy fraction

w =
Etot,1H − Etot,NH

Etot,1H

= 1− (N − 1)(EPt + EPr + ET,NH) + (EPt + EPr,R + ET,NH)

EPt + EPr,R + ET,1H

= 1− (N − 1)(1 + α) + (1 + αR) +NρNH

1 + αR + ρ1H
,

(6.8)

where EPr,R and αR refer to the absolute and relative receive processing of the
destination node R, while EPr,R and αR refer to the other nodes. Here we use
the receiver-to-transmitter processing ratio α = EPr/EPt given in (2.9). Of
course, nothing prevents these reception energies from being equal α = αR,
or, if the final destination is not energy-limited, the destination’s reception
energy from being zero, αR = 0.

Now we replace ρNH in (6.8) by the use of (6.6), and find that

w =

ρ1H

(
1− N

1+ 1/m−κ
g

)
− (N − 1)(1 + α)

1 + αR + ρ1H
. (6.9)

The first term in the nominator is the saved transmission energy while the
second term is the additional processing energy.2 A multi-hop optimistic
upper bound on the energy saving can be found by letting κ → ∞ so that
the multi-hop transmission energy vanishes. We thereby obtain

woptimistic =
ρ1H − (N − 1)(1 + α)

1 + αR + ρ1H
. (6.10)

The maximum energy saving for a given κ is on the other hand found by
letting ρ1H → ∞ so that transmission costs dominate totally,

wmax = 1− N1+
1/m−κ

g . (6.11)

2For illustration, let ρ1H → ∞ to make processing costs negligible, let m → ∞ to
ignore inverse diversity, and finally set g = 1 to ignore the power amplifier degradation.
We then arrive at the common quantitative argument for multi-hop, namely the saving in
transmission energy

w = 1 − N1−κ,

in agreement with direct reasoning from the power-law propagation loss model (6.1).
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Uncertainties in m and κ

Under the present power-law propagation loss model, a parameter of prime
interest is of course the propagation loss exponent κ which determines the
benefits of shorter hops. As seen in (6.9), the fading can have comparable
impact on our conclusions: for small fading figures m, the terms 1/m and κ
in the exponent in (6.9) are of similar magnitude (the fading figure m is not
negligible if it is small). We therefore need to consider the uncertainties in
both m and κ to judge the likely energy savings from multi-hopping. By the
use of a conservative assignment of independent probability distributions,

p(κ,m|I) = p(κ|I)p(m|I), (6.12)

we characterise the uncertainty in the energy saving w by plotting its ex-
pected value

w =

∫∫
w(κ,m)p(κ|I)p(m|I)dmdκ, (6.13)

together with its median wmed and the 95th and 5th percentiles w95 and w5

in Figure 6.1. The probability distributions for κ and m are given by (2.79)
and (2.85) in Section 2.4.

Remark 6.3 Intuitively, it is reasonable to assume that m and κ are nega-
tively correlated in some way; it is hard to imagine fading free-space propa-
gation or a non-fading environment where κ ≈ 4. However, the introduction
of a negative correlation is not problem-free since there are indeed situations
where κ < 2 while fading effects are still present (Seidel and Rappaport, 1992,
p. 210). For this reason we choose the conservative assignment in (6.12) with
its larger uncertainty.

In Figure 6.1 we display the saved fraction w of energy for an equidistant
two-hop scheme, N = 2, under the assumption that each node radio is
equipped with a single antenna. Figure 6.2 shows the corresponding results
for sensors equipped with dual branch diversity receivers achieving a diversity
order gain Δ = 2, given in Definition 3.4 on page 76. This diversity order
gain has the same effect as doubling the Nakagami fading figure, m → 2m.
From Figure 6.1 and Figure 6.2 we observe the following::

• While the absolute minimum transmission-to-total-processing ratio ac-
cording to (6.10) is ρ′1H = 1, see the uppermost dashed curve in
Figure 6.1, the more realistic parameter values reveal that even at
ρ′1H = 1.7 we will with a 95 percent probability still loose energy by
the use of non-diversity multi-hop communication.
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Figure 6.1: Fraction w of saved energy by an equidistant two-hop scheme,
N = 2, in place of the single-hop scheme. Here under the assumption of
non-diversity receivers. All curves correspond to α = αR = 1 and g = 2.

• We do not expect multi-hop to save energy until ρ′1H > 4.5 or ρ′1H > 3.5
for non-diversity and dual-branch diversity receivers respectively. Ad-
ditionally, even at these transmission-to-total-processing ratios there is
a fair risk of energy loss; from studying the median curve wmed we see
that it is a fifty-fifty risk at ρ′1H = 4.1 and ρ′1H = 3.3 respectively for
non-diversity and diversity receivers.

• The maximum expected energy savings wmax in (6.11) are shown as
horizontal curves in the figures. The maximum saving for non-diversity
reception is 22 percent, while it increases to 29 percent with the use of
dual-branch reception.

Remark 6.4 The results in Figure 6.1 and Figure 6.2 were obtained with
αR = 1 and the implicit assumption that the destination node is energy-
limited. If the destination node is instead a sink with unlimited power supply,
modelled with αR = 0, the energy saving/loss w in (6.9) would be more
pronounced; larger energy losses would be induced by multi-hop for small ρ1H,
and slightly larger savings would be achieved for large ρ1H. However, neither
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Figure 6.2: Fraction w of saved energy by an equidistant two-hop scheme,
N = 2, in place of the single-hop scheme. Here under the assumption that
dual-branch reception with a diversity order gain of two is used. All curves
correspond to α = αR = 1 and g = 2.

the maximum energy saving wmax in (6.11), nor the threshold transmission-
to-processing ratio ρ̃1H which we give below in (6.15), would be affected.

Based on the discussion above and by taking full account of Figures 6.1
and 6.2 we reach the following conclusion.

The negative impact of processing energy and inverse diversity
rules out uncoded multi-hop as a means to save energy for the
currently available node radios since their maximum transmission-
to-processing ratios are too small, see Section 2.2.2. Current
nodes are forced to resort to multi-hop for range extension when
a single hop would be more energy efficient had enough output
power been available. Moreover, even at large transmission-to-
processing ratios the energy-gains are uncertain because of in-
complete knowledge of channel characteristics.
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6.2.2 Transmission-to-processing concentration

Whatever the reason for using multi-hop, extended range and/or energy
savings, the use of shorter hops will decrease the transmission-to-processing
ratio ρ. For large ρ we will therefore see the concentrating effect mentioned
in Chapter 2; the optimal approach tends to balance transmission and pro-
cessing costs. We will investigate this next.

Rearranging (6.9) we obtain

ρ1H =
(N − 1)(1 + α) + w(1 + αR)

(1− w)− N
1+ 1/m−κ

g

(6.14)

if N hops are to save a fraction w with respect to a single hop. With w = 0
we obtain the the threshold value

ρ̃1H = (1 + α)
(N − 1)

1− N1+
1/m−κ

g

. (6.15)

Note that ρ̃1H is independent of αR. An optimistic lower bound is attained
if we let κ → ∞,

ρ̃1H,optimistic = (1 + α)(N − 1), (6.16)

or equivalently,

ẼT,1H,optimistic = (EPt + EPr)(N − 1). (6.17)

This limit amounts to neglecting the multi-hop transmission energies and
states the trivial fact that the transmission energy of a single hop must at
least be as large as the additional processing cost of the (N − 1) additional
hops. Observe that the optimistic limit in (6.16) increases with N , the
number of hops, and N = 2 therefore is a case of special interest: if a multi-
hop approach can not save energy for N = 2 we need not consider larger
N .

An extension of (6.15) to the choice between N and K < N hops can be
achieved by the use of (6.7) and modification of the right hand side of (6.8).
The subsequent derivation setting w = 0 yields the threshold

ρ̃KH =
N − K

K

1 + α

1−
(

N
K

)1+
1/m−κ

g

. (6.18)

A special case of interest is N = K + 1; the threshold when one more hop
should be added to save energy. It is in this case instructive to let K → ∞.
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Theorem 6.2 Consider the choice between K and K+1 equidistant hops of
length d/K and d/(K+1) respectively. When K → ∞, the per-hop threshold
transmission-to-total-processing ratio (6.18) becomes

ρ̃∞H = (1 + α)
g

κ − 1/m − g
. (6.19)

Proof: See Appendix 6.E.

First, we point out the fact that m and g increase the limit (6.19) while
κ decreases it. Second, a more interesting fact is that we again see how
the energy-optimal approach tends to equalise processing and transmission
costs – in the limit ρKH = ρ(K+1)H – but the degree to which this can be
done by multi-hopping depends on κ, m and g. For instance, assuming
the use of dual-branch receiver diversity we obtain by inserting the median
values κmed = 3.31 and mD = 2mmed = 3.76 together with g = 2 the limit
ρ̃∞H = 1.92(1 + α). In the case of non-diversity receivers, we arrive at
ρ̃∞H = 2.57(1 + α). Using α = 1 we have ρ̃∞H = 3.84 and have ρ̃∞H = 5.14
for the two cases respectively. We will study the concentration in (6.19)
in Section 6.3 coming next. Observe that the expected threshold is infinite
since multi-hop can not save energy when κ ≤ g + 1/m.

The concentration of the transmission-to-processing ratio shown in (6.19)
have the following interesting implication.

If multi-hopping can save energy, then the energy optimal chain
of hops will in the equidistant case converge to a fixed transmission-
to-processing ratio (6.19). This limit may serve as a design guide-
line for radios and their maximum transmission-to-processing ra-
tio ρmax: apart from considering the absolute energy consump-
tion a designer should take the limit in (6.19) into account and
aim for a ρmax > ρ̃∞H so that the full range of energy efficient
hop lengths can be utilised.3

6.3 Multi-hop with error correcting codes

Error correcting codes start to pay off earlier than multi-hop for uncoded
systems – compare Figure 4.7 on page 122 with Figure 6.1 on page 176 –

3Note that the choice of ρmax is a typical design choice under uncertainty, and the
range of propagation losses κ and fading figures m should be taken into account. We will
not pursue this issue further here because the hardware design problem concerns many
issues we are not considering in this thesis.
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and this suggests that error correction can push the initial benefits of multi-
hopping towards even larger single-hop distances.

Worth to mention in this context is the work by Zhong et al. (2005)
which is focussed on the use of powerful codes to achieve single-hop sensor
networks. They argue that error correcting codes with a simple encoding
procedure should be used by the energy-limited sensors while the receiving
central sink should do the energy-intensive decoding. In this manner one
should be able to increase the transmission range to compete with multi-
hop. In spite of the fact that they ignore the increased processing time,
their line of reasoning fits well into our present analysis. It shows that when
the transmission-to-processing ratio is large enough to motivate the extra
processing energy incurred by multi-hopping, it is well beyond the minimum
requirement for error correcting codes and the range over which single hop
is preferable is further increased by error correcting codes.

Assumption 6.1 We assume a decode and forward approach in which the
message is decoded and re-encoded by every node in the multi-hop path.

Let us begin with a recapitulation from Chapter 4. The use of a rate Rc

code with coding gain Gc over a single hop (1H) results in a normalised total
energy

Ĕtot,1Hc =
Etot,1Hc

ĔPt

=
1

Rc
(1 + αR) +

ρ1Hu

G
1/g
c

, (6.20)

where ρ1Hu is the transmission-to-processing ratio of uncoded (u) transmis-
sions, and the subscript (c) denotes the coded scheme. Application of the
error correcting code and N equidistant hops lower this ratio to

ρNHc = Rc

(
N1/m−κ

Gc

)1/g

ρ1Hu (6.21)

since the per-hop processing energy increases with a factor 1/Rc while the
transmission energy is reduced with a factor G

1/g
c due to coding and a factor

1/N (1/m−κ)/g due to shorter hops. Joint use of multi-hopping and error
correction provides more freedom in the trade-off because we can now adapt
both the number of hops N and the code rate Rc in a way that makes the
most out of the transmission energy gains from shorter hops and coding gain
Gc. How these two techniques will combine depend on the propagation loss
exponent κ and the fading figure m: we see this later in Figures 6.4 and 6.5.
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The total (normalised) per-bit energy becomes

Ĕtot,NHc =
Etot,NHc

EPt

=
1

Rc
[1 + (N − 1)(1 + α) + αR]︸ ︷︷ ︸

Uncoded N-hop processing

+N

(
N1/m−κ

Gc

)1/g

︸ ︷︷ ︸
N-hop – coding gain

ρ1Hu,
(6.22)

By choosing the combination of hops N and code rate Rc that yields the
minimum ĔNHc we achieve the optimum solution.4 There is no closed form
solution to the optimisation, so we perform a simple numerical search over
the BCH codes also used in Chapter 4.

Let us start with N = 2 and study the joint choice of N and Rc next.
In Figure 6.3 we see that the use of error correcting codes increases the
required uncoded transmission-to-total-processing ratio ρ′1Hu – compare with
Figure 6.1 – and it seems that a transmission-to-total-processing ratio ρ′1Hu >
10 is typically required to yield an energy saving w > 0.

However, since the codes themselves lower the transmission-to-processing
ratios we need to consider the resulting, post-coding transmission-to-processing
ratio (6.21) to get a more comprehensive picture. The concentrating effect on
the transmission-to-processing ratio ρ′NHc becomes clearer if we consider more
than two hops and choose the jointly optimal code rate Rc and hop number
N . In Figure 6.4 and Figure 6.5 we depict, for non-diversity and dual-branch
diversity respectively, the optimum number of hops and the corresponding
BCH code rate Rc and the resulting transmission-to-total-processing ratio
ρ′NHc. The results correspond to the median case, see wmed in Figure 6.3.

• There is a strong tendency to concentrate the transmission-to-processing
ratio ρ′NHc; it stabilises at the limiting value given by (6.19). Initially,
however, there are significant fluctuations around this value.

• The code rate also stabilises at a certain value.5

• The equilibrium values of ρ′NHc and Rc depend on the radio condi-
tions. In situations more favourable to multi-hop, that is when the

4Observe that such a free choice of N requires a very dense network or the possibility
to deploy sensors in a way that achieves the desired N .

5This might be the effect of the discrete set of codes used, and we are not sure this
effect would remain in the limit of continuous code rates. If so, the coincidence between
ρ′
NHc and the limit in (6.19) might disappear since the limit implicitly assumes a fixed

code rate. Additionally, there might be properties particular to BCH codes that manifest
themselves in the results.
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Figure 6.3: Energy saving through two hops versus the uncoded single-
hop transmission-to-processing ratios ρ′1Hu and ρ1Hu. Both schemes use
the energy-wise best BCH code. The dashed curves correspond to dual-
branch diversity receivers, while the solid curves correspond to non-diversity
receivers. Common to all results are α = αR = 1, g = 2 and a coding gain
Gc = Gc,max/2, where the upper bound Gc,max from (4.44) on page 117 has
been used.

propagation loss exponent κ is large and the fading figure m is small,
the code rates and the number of hops will increase with the result that
the equilibrium ρ′NHc will decrease (and vice versa for less multi-hop
favourable conditions under which coding will be preferred).6

• The existing radios which we have included in Figures 6.4 and 6.5 are
all forced to use multi-hop earlier than energy-efficiency prescribes.
Not even the CC1000’s ρ′max = 1.6 for 434 MHz is enough because the
optimum scheme requires ρ′ > 3 in both the cases considered.

We conclude the following from the presented results.

Error correcting codes increase the distance over which single-
hop is the preferable choice. However, the use of error correct-
ing codes decrease the transmission-to-processing ratio at which

6Contrary to the proposition of Zhong et al. (2005) to use very low codes rates Rc, we
find that code rates typically stabilise at relatively large values like Rc = 3/4.
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Figure 6.4: Transmission-to-total-processing ratio for multi-hopping with
adaptive BCH coding; κ − 1/m = 2.80 corresponding to the median of
(6.12) and non-diversity receivers. The ratio ρ′NHc is kept small thanks to
the reduction in transmission energy achieved by multi-hopping and error
correction in conjunction. Vertical dotted lines denotes a change in the
optimum number of hops.

multi-hop becomes the better than single-hop. Therefore, cod-
ing render more radio designs suitable for multi-hop but leads to
fewer applications in need for it. The stabilising code rate Rc and
coded transmission-to-processing ratio ρNHc, together with the
initial fluctuations around their limiting values, provide valuable
design guidelines. Radios should have a maximum transmission-
to-total processing ratio ρ′max that is larger than the stabilising
value (6.19), about 50 percent judging from Figures 6.4 and 6.5.
The minimum code rate must be small enough, around 2/3 judg-
ing from the figures, to facilitate a good trade-off between trans-
mission and processing costs.
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Figure 6.5: Transmission-to-total-processing ratio for multi-hopping with
adaptive BCH coding; κ − 1/m = 3.06 corresponding to the median of
(6.12) and dual-branch diversity receivers. The ratio ρ′NHc is kept small
thanks to the reduction in transmission energy achieved by multi-hopping
and error correction in conjunction. Vertical dotted lines denotes a change
in the optimum number of hops.

6.4 Packet aggregation and data fusion

In addition to the reduced transmission costs achieved by multi-hopping, a
virtue of the technique that is often put forward is the possibility to perform
packet aggregation and data fusion as the packets are being forwarded toward
the final destination. Aggregation does not affect the information content of
the packets; one achieves a reduction in packet overhead by combining many
short packets into a long packet with the same content. Fusion does not affect
the overhead but instead exploits data redundancy to reduce the packet size.
One assumes that all forwarding nodes have data, partially redundant, to
send along with the received data. Here we perform a brief study of data
aggregation and fusion from an energy point of view. We limit the study to
a one-dimensional network. No error correcting codes are included.

A complication is the combination of aggregation and fusion with inverse
diversity effects; different bits in an aggregated packet should (perhaps) be
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sent with different error protection as they experience a different number of
hops and thereby different error probabilities. We circumvent this problem-
atic issue by assuming that m  1, that is to say that the impact of fading
is negligible and inverse diversity can be ignored.

6.4.1 Overhead reduction through packet aggregation

Assume that the packet overhead is l bits which add to the L information
bearing (sensor value) bits. If each node in the multi-hop path aggregates
its own L bits with the incoming packet, the overhead-to-information ratio
is reduced since l overhead bits now accommodate 2L information bits. Let

ro ≡ l

L
(6.23)

be the fraction of required overhead when sending an L-bit packet. We
assume for simplicity that no extra tagging is needed when aggregating data,
and that the aggregation processing consumes a negligible amount of energy.

Theorem 6.3 Let N sensor nodes send L bits each to the final destina-
tion, node R. Number the nodes, from the farthest to the closest, by n =
1, 2, . . . , N . The threshold transmission-to-processing ratio ρ̃1H, at which
the energy consumption of the single-hop (1H) and the packet aggregating,
equidistant multi-hop (NH) approaches are equal, is then for a non-fading
environment given by

ρ̃1H = N1+κ/g
N−1

2 +
(

N−1
2 + N−1

N ro

)
α − N−1

N roαR

N∑
n=1

(1 + ro)(N − n+ 1)κ/g − (ro + n)

, (6.24)

where ro is the fraction of packet overhead in (6.23).

Proof: See Appendix 6.F.

We illustrate the behaviour of the threshold for N = 2 in (6.24) in Figure 6.6.
There, we show the threshold ratio ρ̃1H corresponding to the median prop-
agation loss exponent κmed = 3.31, and the percentiles κ95 = 2.00 and
κ5 = 5.12, of our prior for κ in (2.79). Maybe not unexpected, the impact
of packet overhead becomes significant when it is comparable in size with
the information content. Large overheads tend to lower the threshold above
which multi-hop outperforms single-hop, but the effect is mostly weak for
r0 < 0.25. Above ro = 0.25 the threshold ratio decreases significantly and



186 6.4. Packet aggregation and data fusion

0.05 0.10.021.0

0.5

0.2

Threshold transmission-to-total-processing ratio ρ'1H

5.0

10.0

0.2

0.5 1.0

0.1

2.0

Overhead
fraction ro

2.0 5.0 10.0

κ5

κ95

κmed

Figure 6.6: The impact of overhead reduction through data aggregation in
multi-hop communications. The overhead fraction ro from (6.23) is given on
the horizontal axis, and the corresponding threshold ratio ρ̃′1H from (6.24)
is given on the vertical axis. Results are calculated for two hops N = 2,
processing costs α = αR = 1, and power amplifier efficiency degradation
g = 2.

above ro = 1 the overhead reduction can even be the major motivating factor
for multi-hop communication. To us, an overhead fraction ro > 1 appears
huge, but when single sensor readings are reported the overhead can indeed
be quite large.7

6.4.2 Data fusion in multi-hop transmissions

If the data collected by the N nodes can be compressed without informa-
tion loss, or without violation of a specified distortion criterion, there is a
possibility to perform data fusion along the multi-hop route. Especially if
the spatial phenomenon monitored by the network is spatially over-sampled
there are compression gains to be attained. The research field of distributed

7In the recent initiative for using the Internet Protocol in sensor networks, the IPSO
Alliance, the packet header is reduced to 6 bytes, see Dunkels and Vasseur (2008). This
is however a significant overhead if one or a few bytes of data is going to be transmitted
and then ro > 1.
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and incremental source coding is large and our aim here is not to fully ac-
count for the results achieved in that field. Rather, we try to capture the
first-order effects of data fusion on multi-hop energy efficiency and for this
purpose we will use the following simple model. We assume that the infor-
mation in the NL data bits collected by N nodes can be compressed to rfNL
bits, where 1/N ≤ rf ≤ 1. One can view 1/rf as the spatial over-sampling
achieved by the present sensor node deployment.8 Note that rf = 1 amounts
to incompressible data while rf = 1/N corresponds to the computation of a
single sufficient statistic (such as the average of all measurements). We fur-
ther assume that the compression can be carried out incrementally in each
hop so that the first node sends L bits and the following node add bits in
a linear manner so that node N sends rfNL bits to the final destination.9

We summarise this multi-hop data fusion model by letting node n transmit
L(n) bits according to

L(n) = L

(
1 + (n − 1)

rfN − 1

N − 1

)
. (6.25)

No compression is assumed possible in the single-hop case. We make two
more simplifying assumptions before we go on. First, the processing energy of
the compression is neglected. Second, we assume that the packet overhead
l = roL is small enough to be neglected, ro 
 1. Then we obtain the
following result.

Theorem 6.4 The threshold value r̃f below which the multi-hop data fusion
alternative is more energy-efficient than the single-hop scheme is given by

r̃f =

1 + 2αR − α+ ρ1H

(
2
N

N∑
n=1

(
N−n+1

N

)κ/g − N−κ/g

)
N(1 + α) + 2(αR − α) + ρ1HN1−κ/g

. (6.26)

Proof: See Appendix 6.G.

We show r̃f graphically in Figure 6.7 for N = 2; thereby 1/2 ≤ rf ≤ 1.
First, we note that if we have the best possible situation for data fusion,
that is rf = 1/N , and αR = α, we would always prefer the multi-hop ap-
proach. This is because we can replace the N single-hop transmissions with
N shorter transmissions without increased processing; the packet length does

8The number of signal dimensions, or target positions, reliably identified per sensor has
been studied by Aeron et al. (2007) and Rachlin et al. (2005) recpectively. The interested
reader is referred to these publications and references therein.

9Other incremental schemes are possible.
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Figure 6.7: The maximum allowable compression factor rf for different
transmission-to-processing ratios ρ1H. Below the curves the sensor network
will benefit energy-wise from a combined multi-hop and data-fusion scheme.
Here, N = 2, α = 1 and g = 2.

not increase and the fusion comes at negligible energy cost. On the other
hand, if the data is reported to a central sink operating without an energy
constraint, we can set αR = 0. We then observe that multi-hopping is not
always preferable even in the most optimistic compression case. The reason
is that the receive processing costs is zero for single-hop while multi-hop
adds receive processing costs at each hop, and these receive costs have to
be outweighed by the shorter hops and the compression. At transmission-
to-total-processing ratios ρ′1H > 1 the odds for this seem fairly good. In
any case, if significant “spatial compression” is possible with a multi-hop ap-
proach, but not with the single-hop approach, it can be a strong reason to
consider multi-hopping. It adds to the short-hop transmission benefits.

Our compression model in (6.25) is simplistic and many real applications
of data fusion are conjectured to behave differently. We do however believe
that our model captures the overall effect of data fusion and differences from
the linear assumption will not have decisive impact as long as the overall
compression factor rf is the same. But, deviations will appear and our results
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should be interpreted with this in mind.
From our first-order analysis of packet aggregation and data fusion we

conclude the following.

Large packet overheads and/or substantial data redundancy can
offset the previous results that multi-hop is rarely efficient, mak-
ing it attractive at least in equidistant cases. However, in addi-
tion to significant overhead reduction and data fusion, the desti-
nation node must be energy limited. In data gathering networks
this may not be the case.

6.5 Multi-hop in irregularly deployed networks

Up to this point we have only considered nodes perfectly positioned on a
grid. We have assumed that there are always relay-nodes present in the
most favourable position10, regardless of transmission distance and network
density. This assumption is of course not very realistic. Therefore, we now
include irregular node placement and study how the uncertainty in node
position affects design choices. Additionally, we consider the uncertainty
regarding the propagation loss exponent; what can be said about multi-hop
energy efficiency if the propagation loss exponent κ is imprecisely known?

For convenience, let us consider the most interesting comparison, one hop
versus two hops. To simplify the presentation, we focus on the impact of node
position by assuming that no shadowing or small-scale fading occurs, and
the reader can bear in mind that multi-hop is thus favoured by the absence
of inverse-diversity fading effects.

6.5.1 The normalised analysis

To quantify the impact of the relay node’s position on the transmission
energy we consider the situation depicted in Figure 6.8. The node on the far
right makes use of a node located in between itself and the destination node
on the far left. We normalise the distance between source and destination to
unity, and let the midpoint – which is also the best relay node position – be
our Cartesian origin (0, 0) as marked by the star in Figure 6.8. The use of a
relay node Sd situated on the straight line between source and destination,
at a distance d̆ from the midpoint, 0 ≤ d̆ < 1/2, will lead to a transmission

10Most favourable from a total transmission energy perspective, for instance a node
positioned midway between the transmitter and the destination when comparing single-
hop with two hops.
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Energy ”isobar”
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Figure 6.8: Multi-hop, here from right to left, via nodes Sd and Sxy are
energy-wise equivalent if they are on the same energy “isobar” as defined by
(6.28). An elliptic approximation is used to find the area within the isobar.

energy

ET,2H =

[(
1

2
+ d̆︸ ︷︷ ︸
d̆1

)κ
g

+

(
1

2
− d̆︸ ︷︷ ︸
d̆2

)κ
g

]
ET,1H. (6.27)

Here we have made use of the power-law propagation loss model (6.1) for hop
distances d̆1 and d̆2, together with the amplifier efficiency degradation model
(2.14). For all κ/g > 1 we see that d̆ = 0 is the best location, and all offsets
increase the energy consumption.11 Consider now a relay node Sxy situated
at position (x, y), see Figure 6.8. It will provide the same energy-efficiency
as relay Sd if(

1

2
+ d̆

)κ
g

+

(
1

2
− d̆

)κ
g

=

((
1

2
+ x

)2

+ y2

) κ
2g

+

((
1

2
− x

)2

+ y2

) κ
2g

.

(6.28)
The solution defines an energy “isobar” depicted in Figure 6.8, and all relays
on this “isobar” are equivalent from an energy point of view. When κ/g = 2
the solution to (6.28) is a circle of radius d̆; x2 + y2 = d̆2. Otherwise, as we
show in Appendix 6.H by the use of a series expansion of (6.28), the solution
can be approximated by an ellipse given by

x2 +

(
y√

κ/g − 1

)2

= d̆2. (6.29)

11If κ/g < 1 the degradation in amplifier efficiency outweighs the transmission energy
gain and longer hops are preferable since the higher output power levels correspond to
better efficiency. Of course, if this is the case we should always use a single-hop approach
(remember that we presently ignore shadowing effects and the possibility to circumvent
shadowing objects by multi-hopping).
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The ellipse has semi axes of length d̆ and
√

κ/g − 1d̆ respectively (it thereby
includes the circle solution as a special case). We can use (6.29) to find an
d̆ which is energy-wise equivalent to any position (x, y), and thereby work
with a single dimension instead of two.

Finding the best node.

The attainable transmission-energy saving is dependent on d̆, that is the
relay node’s distance to the optimum relay position. Let λ̆ be the normalised
sensor node density, that is the (average) number of nodes within unit area.
How close to the optimum (0, 0) can we then hope to find a relay node? With
reference to Corollary 2.1 on page 50, we assign a Rayleigh distribution for
the semi-minor axis d̆ of the smallest ellipse that includes one node, and the
elliptic solution in (6.29) we obtain

p(d̆|λ̆, κ, I) = 2π
√

κ/g − 1λ̆d̆e−π
√

κ/g−1λ̆d̆2
. (6.30)

Large normalised node density and large propagation loss exponent increase
our chances to find a good relay node; the Rayleigh distribution becomes
narrower and contracts towards d̆ = 0.

Remark 6.5 We know from before that the larger the propagation loss expo-
nent κ is, the larger the attained energy saving can be, see (6.1). Additionally,
for a given normalised node density λ̆ we are according to (6.30) more likely
to find a relay node in a good position when κ is large (due to the larger
elliptic “isobar” in Figure 6.8). However, due to the normalisation of the
distance, and hence also the node density, one should remember that λ̆ ac-
tually depends on κ: the larger κ is, the smaller the attainable transmission
range becomes, and the actual node density λ thus transforms into a smaller
λ̆. We return to this issue on page 195.

Any relay node situated at d̆ ≥ 1/2 would be farther away than the desti-
nation and would of course not be used since a single hop is then obviously
preferable. The probability for finding a relay node closer is

P (d̆ < 1/2|λ̆, I) =

1/2∫
0

p(d̆|λ̆, I)dd̆

=

1/2∫
0

⎛⎝ ∞∫
1

p(d̆|λ̆, κ, I)p(κ|I)dκ

⎞⎠ dd̆,

(6.31)
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Figure 6.9: The probability for finding a relay node which would offer re-
duced transmission energy. Note that the probability saturates at 0.95
since our prior includes an 0.05 probability that κ ≤ 2 = g; under these
circumstances single-hop is always preferable.

where our present prior p(κ|I) is given by (2.79) on page 52. In Figure 6.9 we
show how the probability of finding a relay node depends on the normalised
node density.

Processing energy and total energy saving.

Let us now include processing energies and compare the total energy con-
sumptions of single-hop and two-hop. To save a fraction w of the single-hop
energy we must have

(1− w)Etot,1Hu =Etot,2Hu,

(1− w)(EPt + EPr,R + ET,1Hu) =EPt + EPr + EPt + EPr,R

+

[(
1

2
+ d̆

)κ
g

+

(
1

2
− d̆

)κ
g

]
ET,1Hu,

(1− w)(1 + αR + ρ1Hu) =1 + α+ 1 + αR

+

[(
1

2
+ d̆

)κ
g

+

(
1

2
− d̆

)κ
g

]
ρ1Hu,

(6.32)
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where

α =
EPr

EPt
,

αR =
EPr,R

EPt

(6.33)

denote the normalised reception processing costs of the relay and destination
nodes respectively, while

ρ1Hu =
ET,1Hu

EPt
(6.34)

is the single-hop uncoded transmission-to-processing ratio. Solving (6.32)
for w we obtain

w =

ρ1Hu

[
1−

((
1
2 + d̆

)κ
g
+

(
1
2 − d̆

)κ
g

)]
− (1 + α)

1 + αR + ρ1Hu
. (6.35)

By the use of (6.35) and (6.30) we can now find p(w|(d̆ < 1/2), λ̆, I) – the
probability distribution which manifests the uncertainties in κ and d̆ – but
only through numerical computations since the change of variables from κ
and d̆ to w is not analytically tractable for all cases. In Figure 6.10 we
display the uncertainty in w given that a relay node is found for d̆ < 1/2.
This qualification is important when interpreting Figure 6.10; the results
could otherwise give a false indication that the sensitivity to the normalised
node density is smaller than it actually is. The low-density network requires
roughly double the transmission energy of the ideal case, while the denser
network comes close to it.

Figure 6.9 and Figure 6.10 together give an idea of the impact of the
normalised node density. A compound view is given in Figure 6.11 where we
show the probability for w > 0, P (w > 0|λ̆, I), which is found by numerical
integration over the probability distribution for κ and d̆. We note that in the
best case, λ̆ = 50, a transmission-to-processing ratio ρ1Hu > 5.5 is required
to achieve a fifty-fifty chance of saving energy. For sparser networks, the limit
increases steadily and the impact of low densities is more clearly visualised
than in Figure 6.10.

Based our results and the discussion above we make the following obser-
vations.

Suboptimal relay node placement reduces the multi-hop energy
savings significantly. The uncertainty is therefore large when
judging the energy efficiency of multi-hop over sparse networks,
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Figure 6.10: Energy saving w given that a relay node is found for d̆ ≤ 1/2.
Black lines correspond to the ideal, equidistant, case of (6.9) when m → ∞,
while the blue and red lines correspond to λ̆ = 1 and λ̆ = 10 respectively.
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Figure 6.11: The probability of saving energy through a two-hop approach
under different normalised node densities.
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and this uncertainty probably translates into a larger design
margin for the nodes’ maximum transmission-to-processing ra-
tio ρmax: to avoid being forced to inefficient multi-hop due to
badly positioned relays, the node needs additional output power
(relative to the processing power) when relay nodes are not abun-
dant.

6.5.2 Non-normalised analysis

By the preceding analysis we have found that the normalised node density,
essentially the average number of nodes present in the unit area between
sender and receiver, should be around five to sustain good multi-hop possi-
bilities. But how does this relate to real node densities, given in nodes per
square metre? Let us assume constant transmit power and use the propaga-
tion loss model (6.1) written in the following form,

Erad = KT

(
d

d0

)κ

, (6.36)

where d is the inter node distance, d0 is the model’s reference distance, and
KT is a transmission constant which depends on target error rate, fading
figure, link margin, noise level, receiver noise figure, etc. All the latter con-
tributions are assumed constant in the following calculations. The maximum
distance, the maximum range of the radio, is for a free-space environment
(κ = 2),

dmax,2 = d0

(Erad,max

KT

)1/2

. (6.37)

where Erad,max is the radio’s maximum radiated energy per bit. Now, from
the Mikami power amplifier model (2.14) we have that

Erad = Erad,max

( ET

ET,max

)g

= Erad,max

(
ρ

ρmax

)g

,

(6.38)
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where g is the amplifier degradation exponent. By the use of (6.36), (6.37)
and (6.38) we obtain the normalised density

λ̆ = λd2

= λd2
0

(Erad

KT

)2/κ

= λd2
0

(Erad,max

KT

)2/κ (
ρ

ρmax

)2g/κ

= λd2
0

(
dmax,2

d0

)4/κ (
ρ

ρmax

)2g/κ

,

(6.39)

where λ is the average number of nodes per square metre. Observe that

• For a given transmission-to-processing ratio ρ, the normalised node
density λ̆ decreases with an increasing propagation loss exponent κ
due to the shortened transmission distance achieved.

Therefore, while the use of a normalised node density λ̆ gives a good idea
of how many relay nodes that are needed (on the average) in the area be-
tween sender and receiver, it conceals an important “diluting” effect: smaller
transmission-to-processing ratios correspond to shorter distances and hence
fewer possible relay nodes. We illustrate this effect in Figure 6.12 where we
show data transmissions corresponding to ρ = 1, but under different propa-
gation loss exponents κ. Large κ means shorter transmission and smaller λ̆.

Radio parameters

One of the merits of the transmission-to-processing metric is that we can
carry out a more general analysis than if every radio and transmission pa-
rameter has to be specified; we have been able to focus on the transmission-
processing trade-off regardless of absolute energy levels and specific propa-
gation losses. But now, when the real distances start to interact with the
trade-off model we are forced to specify additional characteristics of the prop-
agation and the radio. From (6.39) we conclude that we need to specify d0,
dmax,2 and ρmax respectively. We make the following selection.

• We will here use ρmax = 2ρ′max = 20, assuming that α = αR = 1, to
facilitate the single-hop vs. multi-hop assessment over the previously
considered range of ρ’s. To the best of our knowledge there are no
sensor node radios available with this large transmission-to-processing
ratios – our choice is for illustrative rather than realistic purposes.
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Figure 6.12: The impact of the propagation loss exponent κ on the nor-
malised node density, that is the (average) number of nodes present between
source and destination nodes. The stars indicate the optimum node posi-
tions and the ellipses show the energy “isobars” of the relay nodes actually
present.

• For simplicity we set d0 = 1 m even if this propagation loss parameter
can be larger; Goldsmith (2005, page 47) holds that d0 is typically
between one and ten metres in indoor environments.

• Due to the considerable spread in output power and bit rates found for
proposed radios, there is a sizeable spread in the free-space transmis-
sion range dmax,2. We have found radiated energies Erad per bit ranging
from 0.1 nJ (Wu et al., 2007) to 0.9 μJ (Aerocomm, 2008), resulting
in transmission ranges spanning from tens of metres up to several kilo-
metres. We choose to use dmax,2 = 300 m and dmax,2 = 2500 m to
illustrate the impact of transmission range.

In Figure 6.13 and Figure 6.14 we plot the probability P (w > 0|λ, I) for
saving energy by the use of two hops. The probability is found by integration
over our probability assignment (2.79) for κ and the Rayleigh distribution for
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Figure 6.13: Probability for saving energy by the use of two hops when
d0 = 1 m and dmax,2 = 300 m. The node density in nodes per square metre
is shown for each curve. Results pertain to ρmax = 20, α = αR = 1 and
g = 2.

r as given by Corollary 2.1 on page 50. The most prominent impact of the in-
terdependence between the normalised node density λ̆ and the transmission-
to-processing ratio ρ is that it for low node densities λ takes a long single-hop
distance d to attain a sufficient number of possible relay nodes. Hence, the
threshold transmission-to-processing ratio can be increased as compared to
Figure 6.11. However, once enough relay nodes are present, the number in-
creases with ρ and the climb in probability P (w > 0|λ, I) is steepened. The
normalised node densities quickly become very large; with λ = 0.01 m−2 and
dmax,2 = 300, the normalised node density λ̆ = 900 when ρ = 20.

We can now make the following observation.

Today’s ultra-low power radios can cause problems through their
limited transmission range, because even when the transmission-
to-processing ratio ρ is large enough to motivate multi-hopping,
the normalised node density λ̆ may be too small to facilitate its
use energy efficiently. Nodes may have to be more densely de-
ployed than the sensing application requires in order to facilitate
communication. In such a case, larger ρmax, than previously sug-
gested is motivated for connectivity reasons rather than energy
reasons.
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Figure 6.14: Probability for saving energy by the use of two hops when
d0 = 1 m and dmax,2 = 2500 m. The node density in nodes per square
metre is shown for each curve. Results pertain to ρmax = 20, α = αR = 1
and g = 2.

6.6 Concluding remarks

Observe that except for Section 6.5.2, where the actual transmission range
comes into play, all our results should hold regardless of the absolute power
level; the results pertain to high power radios as well as ultra-low power
radios.

Multi-hop presently for range extension. Considering the range of
transmission-to-processing ratios that presently available node radios ex-
hibit, it stands clear that the present virtue of multi-hopping is range ex-
tension rather than energy-efficiency. This is especially true in the uncoded
case, but holds also under an adaptive coding approach. Having said this, we
would like to stress that according to our present models, multi-hopping will
be motivated energy-wise at some point, and single-hop is not the uniformly
best alternative for all network sizes. Otherwise, the most notable exceptions
to the rule are networks with heavy packet overheads and/or considerable
data redundancy where the destination node is energy-limited.

Transmission-to-processing ratio and radio design. As present nodes
with their inadequately small transmission-to-processing ratios ρmax can not
fully utilise the single-hop benefits we propose as a general guideline that,
if the processing costs of the architecture can not be decreased, the out-
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put power should be increased to enable the optimal choice between single-
hop and multi-hop. Maximum transmission-to-processing ratios approaching
ρmax = 10 seems to be required to have some margin against the uncertainty
stemming from unknown channel characteristics. Note that a very large max-
imum output power comes with a penalty in efficiency when the maximum
is not utilised. Hence, the margin should not be exaggerated.

Some unconsidered factors. A possibly important factor that we have
not considered here is the cost of wake-up, synchronisation and routing, all
of which are probably larger for multi-hop than single-hop networks.
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Appendix 6.A Proof of Lemma 6.1

Consider first the end-to-end probability for bit error P (N) after N hops. For each
individual hop we assign independent bit error probabilities P . The recurrence
equation for the probability of error after N + 1 hops is

P (N + 1) = P (N)(1− P ) + (1− P (N))P, (6.40)

where the first term is the probability that the bit is erroneous after N hops and
will remain erroneous, and the second term is the probability that the bit is correct
but changes due to an incorrect decision at the receiver. The recurrence equation
in (6.40) has the solution

P (N) =
1

2

[
1− (1− 2P )

N
]
, (6.41)

which can be found by application of the z-transform to (6.40). By expanding the
solution P (N) in a power series around P = 0 we obtain

P (N) = NP − N(N − 1)P 2 +
2

3
N(N − 1)(N − 2)P 3 + . . .

= NP +O((NP )2).
(6.42)

Consider next an outage probability over N independent hops. We have then the
probability

1− P (N) = (1− P )N (6.43)

that no link is in outage, and the corresponding series expansion around P = 0 is

1− P (N) = 1− NP +
1

2
N(N − 1)P 2 − N(N − 1)(N − 2)P 3 + . . .

= 1− NP +O((NP )2).
(6.44)

Hence, the error probability is P (N) = NP +O((NP )2).

Appendix 6.B Proof of Lemma 6.2

Consider a modulation with asymptotically exponential error behaviour in a static
Gaussian channels Perror,sta ∝ exp(−C1γ), when γ  1, for some positive constant
C1. With an average received signal-to-noise ratio γ over a Nakagami-m fading
channel, the error probability Perror behaves like

Perror ∝ γ−m (6.45)

for sufficiently large average signal-to-noise ratios γ, see (2.108) on page 68. By the
use of (6.45) and an overall target error rate Perror,1H = NPerror,NH – it does not
matter if we consider outage or bit errors – we find that

γ−m
1H = Nγ−m

NH

γNH = N
1
m γ1H. (6.46)
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Appendix 6.C Proof of Theorem 6.1

The average required radiated energy is proportional to the required average signal-
to-noise ratio, E rad ∝ γ. Under the assumption that the overall channel conditions
are equal for all hop lengths, we then invoke the power law propagation loss model
(6.1) for both single-hop and multi-hop. In combination with Lemma 6.2 we obtain

E rad,NH = KTγNH

(
d

Nd0

)κ

(6.47)

= KTN
1
m−κγ1H

(
d

d0

)κ

(6.48)

E rad,1H = KTγ1H

(
d

d0

)κ

, (6.49)

where KT is a transmission constant of no present interest. The resulting gain in
radiated energy becomes

GNH ≡ Erad,1H

Erad,NH

= Nκ− 1
m . (6.50)

Appendix 6.D Proof of Corollary 6.1

By including the amplifier back-off degradation factor g, see (2.14), we can relate
the required transmission energies,

ET,NH =
ET,max

E1/g
rad,max

E1/g

rad,NH

=
ET,max

E1/g
rad,max

(
N1/m−κErad,1H

)1/g

= N
1/m−κ

g ET,1H. (6.51)

Dividing by the transmitters per-bit processing cost EPt we arrive at

ρNH = N
1/m−κ

g ρ1H (6.52)

by the use of the definition of the transmission-to-processing ratio ρ in (2.7).

Appendix 6.E Proof of Theorem 6.2

Replace N with K+1 in (6.18) and substitute 1/K → x and 1+ (1/m−κ)/g → y.
We can then write

ρ̃KH = (1 + α)
x

1 − (1 + x)y
. (6.53)
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Treating x as a continuous variable, which is a good approximation when K ap-
proaches infinity, we make a Taylor series expansion around x = 0 and find that

ρ̃KH = (1 + α)

(
−1

y
+

y − 1

2y
x+O(x2)

)
. (6.54)

Setting x = 0 then results in the desired limit (we achieve the same result by
treating x as a continuous variable and applying the first l’Hopital rule to the limit
of (6.53), which is of the indeterminate form 0/0).

Appendix 6.F Proof of Theorem 6.3

Let ρ1H(n) be the transmission-to-processing ratio of node n transmitting over a
fraction (N − n + 1)/N of the unit distance between the farthest node 1 and the
destination node R. If all N sensor nodes communicate directly with the destination
node R in a single-hop fashion – each nod transmitting an L+l = L+roL bit packet
– the total normalised energy cost per information bit is

Ĕ1H =
E1H

EPt

=
1

NL

(
N(L+ roL) +N(L+ roL)αR

+(L+ roL)

N∑
n=1

ρ1H(n)

)

= (1 + ro)(1 + αR)︸ ︷︷ ︸
ĔPt+ĔPr

+
1 + ro

N

N∑
n=1

(
N − n+ 1

N

)κ/g

ρ1H︸ ︷︷ ︸
ĔT

, (6.55)

where we have used (6.7) to replace

ρ1H(n) =

(
N − n+ 1

N

)κ/g

ρ1H. (6.56)

For N hops with aggregation, the packet size grows with the hop number n as
nL + l = nL + roL. By adding processing energy and transmission energy for the
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growing packet we obtain

ĔNH =
1

NL

(
N∑

n=1

(nL+ roL) + (NL+ roL)αR + α

N−1∑
n=1

(nL+ roL)

+ρ1HN−κ/g
N∑

n=1

(nL+ roL)

)

=
1

N

N∑
n=1

(n+ ro)︸ ︷︷ ︸
ĔPt

+(1 + ro/N)αR + α
1

N

N−1∑
n=1

(ro + n)︸ ︷︷ ︸
ĔPr

+ ρ1HN−κ/g 1

N

N∑
n=1

(ro + n)︸ ︷︷ ︸
ĔT

. (6.57)

Here we use the receiver-to-transmitter processing ratios α = EPr/EPt and α =
EPr,R/EPt for the sensor nodes and the destination node respectively. The threshold
transmission-to-processing ratio ρ̃1H is found by solving, preferably using Mathe-
matica 6 (Wolfram Research Inc., 2007), Ĕ1H = ĔNH for ρ1H by the use of (6.55)
and (6.57);

ρ̃1H = N1+κ/g
N−1

2 +
(

N−1
2 + N−1

N ro

)
α − N−1

N rαR

N∑
n=1

(1 + ro)(N − n+ 1)κ/g − (ro + n)

. (6.58)

Appendix 6.G Proof of Theorem 6.4

A network employing single-hop communication directly to the destination node R
bears the total cost of N point-to-point transmissions of L bits over normalised hop
length (N − n+ 1)/N . In normalised cost per information bit we have that

Ĕ1H =
1

rfNL

(
NL(1 + αR) + L

N∑
n=1

ρ1H(n)

)

=
1 + αR

rf︸ ︷︷ ︸
ĔPt+ĔPr

+
1

rfN

N∑
n=1

(
N − n+ 1

N

)κ/g

ρ1H︸ ︷︷ ︸
ĔT

. (6.59)

Here ρ1H(n) has been replaced according to Corollary 6.2. A multi-hop network
obeying the data fusion model in (6.25) expends energy for transmitting L(n) bits
per hop over N equidistant hops of normalised length 1/N . The normalised energy
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per information bit is

ĔNH =
1

rfNL

(
N∑

n=1

L(n) + α
N−1∑
n=1

L(n) + αRrfNL+ ρ1HN−κ/g
N∑

n=1

L(n)

)

=
1

2

(
N +

1

rf

)
(1 + α) + (αR − α) +

1

2
ρ1HN−κ/g

(
N +

1

rf

)
, (6.60)

where we have made use of the fact that

N∑
n=1

L(n) = L

N∑
n=1

(
1 + (n − 1)

rfN − 1

N − 1

)
=
1

2
LN(rfN + 1). (6.61)

Equating the energy consumptions in (6.59) and (6.60) and solving for rf we obtain

r̃f =

1 + 2αR − α+ ρ1H

(
2
N

N∑
n=1

(
N−n+1

N

)κ/g − N−κ/g

)
N(1 + α) + 2(αR − α) + ρ1HN1−κ/g

. (6.62)

Appendix 6.H An elliptic approximation

First, expand the left hand side of (6.28) in a power series in d̆ to obtain

21−κ
g − 22−κ

g (g − κ)κd̆2

g2
+O

(
d̆3

)
. (6.63)

Second, expand the right hand in x and y to arrive at

21−κ
g +

22−κ
g κ

g
y2 − 22−κ

g (g − κ)κ

g2
x2 +O

(
(xy)2

)
. (6.64)

Keeping only second order terms in x, y and d̆ we find the elliptic approximation
from equation (6.63) and (6.64),

x2 +

(
y√

κ/g − 1

)2

= d̆2. (6.65)





Chapter 7
Cooperative MIMO

THE STRONG interest in wireless sensor networks has stimulated the
development of a range of cooperative techniques that are aimed at effi-

cient use of the network’s limited energy resources. In this chapter we study
the possible energy-wise benefits from cooperative multiple-input multiple-
output (MIMO) communication; clusters of nodes cooperating in the trans-
mission and reception to improve the communication performance. Cui et al.
(2004) presented the first thorough investigation of the energy-efficiency of
cooperative including the processing energy. Their conclusion was that in
spite of the processing costs, cooperative MIMO yielded large energy sav-
ings above a modest threshold distance. By analysing the transmission-
processing trade-off directly through the transmission-to-processing ratio ρ
we come to the different conclusion that currently available nodes will not,
or only rarely, save energy by the use of cooperative MIMO communication
in place of direct node-to-node (SISO) communication. Our analyses favours
the cooperative scheme by ignoring issues such as local transmission costs
and synchronisation.

We also consider the comparison between multi-hop and cooperative
MIMO in the case that single-hop SISO actually is less energy-efficient (for
large transmission-to-processing ratios ρ). This comparison is not new, it is
rather well studied as a special case of cooperative diversity, or cooperative
relaying. However, in contrast to most of the research which is focussed
on communication capacity and transmission energy, we concentrate on the
first-order effects of processing energy. Unfortunately, we find no straight-
forward answer to the multi-hop or MIMO design question, mainly due to
the uncertainty regarding the channel characteristics.

207



208 7.1. Cooperative MIMO-STBC

7.1 Cooperative MIMO-STBC

Let us consider a node S which has data intended for node R, see Figure 7.1.
With respect to the transmitter and receiver clusters in Figure 7.1, let

nt ≡ the number transmit nodes,

nr ≡ the number receive nodes.
(7.1)

A cooperative MIMO transmission from S to R can be divided into three
stages of operation: 1) Sharing the data from the source node S among the
nt nodes participating on the transmit side. 2) Performing the synchronised
MIMO transmission from the nt transmit nodes to the nr receive nodes.
3) Gathering the received symbols at the destination node R. By contrast,
the SISO scheme involves only one point-to-point transmission from node
S to node R. The main energy trade-off is obviously that between pro-
cessing energy and transmission energy, but the cooperative scheme must
also expend some transmission energy in the stages of data sharing and
data gathering. The latter could of course be viewed as processing energy
if one likes, but the label has no bearing on the results. We now model the
two parts, processing and transmission energies, in a straightforward man-
ner under the assumption of fixed-rate transmissions through a flat fading
Nakagami-m channel, with channel state information at the receiver only.
The MIMO transmissions use orthogonal space-time block codes (STBC),
known for low-complexity decoding at the receiver. The SISO transmissions
are not protected by error correcting codes. Unless otherwise stated, all
nodes are identical and each node is supposed to have a single antenna.

7.1.1 Total processing energy per bit

We will here express the processing energies consumed during transmit coop-
eration, the long-range cooperative transmission and the receive cooperation.
In conformity with previous chapters we express the energies normalised by
the single node transmit processing energy per bit, EPt.

Transmit cooperation. Starting with the transmit side, we note that
the data from node S can be shared by the use of a single broadcast. This
broadcast is only required when nt ≥ 2 and by the use of the unit step
function

u(x) =

{
0 , x < 0
1 , x ≥ 0

(7.2)
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cooperative MIMO transmission

fading channel

Transmit
cooperation

nt nodes

Receive
cooperation

nr nodes

S

R

Figure 7.1: A cooperative MIMO transmission of data from source node
S to destination node R. The key idea is that exploitation of cooperative
diversity will reduce the required transmission power and thereby save pre-
cious energy resources. The principal question is whether this transmission
gain is larger than the cooperation cost.

we can express the normalised processing energy per bit as

ĔRPt =
ERPt

EPt

=
u(nt − 2)EPt + (nt − 1)EPr

EPt

= u(nt − 2) + (nt − 1)α,

(7.3)

where ERPt is the total processing energy per bit, see (2.5) on page 20,
and α = EPr/EPt is the receiver-to-transmitter processing ratio in (2.9) on
page 21.

Long-range cooperative MIMO transmission. We include nt trans-
mitters and nr receivers to arrive at

ĔRP,long =
1

Rc

ntEPt + nrEPr

EPt

=
1

Rc
(nt + nrα) ,

(7.4)

where Rc is the code rate of the orthogonal space-time block code.1 For SISO
transmissions Rc = 1 while it depends on nt and nr for MIMO transmissions
(Larsson and Stoica, 2003, Sec. 7.4).

1We will assume that an orthogonal design can be found, and this holds true for the
small MIMO systems we consider.
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Receive cooperation. Finally we suppose that the data sharing on the
receiver side requires nr − 1 point-to-point transmissions from the assist-
ing nodes to node R, the final destination. Consequently, the associated
processing energy per bit is

ĔRPr =
(nr − 1)(EPt + EPr)

EPt

= (nr − 1)(1 + α).

(7.5)

Total processing energy. Summing all processing energies in (7.3), (7.4)
and (7.5) we find that the total processing cost for transmit cooperation,
long range transmission and receive cooperation is given by

ĔRP =

[
u(nt − 2) +

1

Rc
nt + nr − 1

]
︸ ︷︷ ︸

transmit proc.

+

[
nt +

(
1 +

1

Rc

)
nr − 2

]
α︸ ︷︷ ︸

receive proc.

, (7.6)

where the braces collect the processing energies for all transmissions and
receptions respectively (transmission and reception takes place in both the
clusters of cooperating nodes). Observe that (7.6) is valid for both SISO and
cooperative MIMO, that is for all positive integers nt and nr.

7.1.2 Total transmission energy per bit

Reasonably, the energy consumptions of the SISO and cooperative MIMO
schemes should be compared under the requirement of equal end-to-end per-
formance, that is from node S to node R. For convenience we will disregard
from the fact that the local transmissions before and after the long-range
transmission may be corrupted by errors.2

Transmit cooperation. The transmit energy per bit expended by the
source node S in the initial, local, broadcast will be denoted ETt. We include
it in the model, but we will for simplicity mostly assume that it is negligible
and that the corresponding transmission-to-processing ratio, given in (2.7),

ρt = ETt/EPt (7.7)

2Remember that the inverse diversity effect, given by Definition 6.1 on page 171, was
quite important in the multi-hop scheme applied in a fading environment (see Section 6.1,
Lemma 6.2 on page 171). In a cooperative scheme parts of the information actually has
to undergo multiple hops. We are here however considering short hops for which a very
small probability of error can be achieved without excessive transmit power levels.
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is zero ρt = 0. The motivation is that if cooperative MIMO is to be sensible at
all, the distances within the transmit cluster should be significantly shorter
than the long range transmission. We will thus underestimate the energy
cost of the cooperative scheme somewhat, but not severely so.

Long-range transmission. Most important of the transmission energies
is the long range transmission energy. Naturally, to save energy by the use
of cooperative MIMO the transmit nodes must adjust their transmit power
level; we here assume that they use a fixed link margin, or that any long-term
adjustments of the transmit power comes at a negligible energy cost. We
show in Appendix 7.A that the average bit error rate3 for coherently detected
quadrature amplitude modulated (QAM) transmissions over a Nakagami-m
channel is accurately approximated by

B = (−1)−mnrnt
2

b
√

π

√
2b − 1√
2b

Γ
(
mnrnt +

1
2

)
Γ(mnrnt)

× β

(
−2

(
2b − 1

)
mntRc

3bγ
,mnrnt,

1

2
− mnrnt

) (7.8)

where b ≥ 2 is the number of bits per symbol, β(x, p, q) is the incomplete
beta function (Gradshteyn and Ryzhik, 2000, p. 900), and γ is the average
received signal-to-noise ratio per bit. The result in (7.8) was derived under
the assumption of identical and independent probability distributions across
the ntnr channels of which the receivers have perfect information. It is exact
for b = 2, and we will henceforth assume that two bits per symbol are used,
that is quaternary phase shift keying (QPSK). The radiated-energy gain can
be found from the required average signal-to-noise ratios per bit for SISO
(S) and cooperative MIMO (cM) respectively,

GcM ≡ γS

γcM

. (7.9)

Here, γS and γcM are found numerically from the bit error rate (7.8). Invok-
ing the Mikami et al. (2007) amplifier efficiency degradation model (2.14) we
can by use of (7.9) relate the transmit energies per bit as

ET,cM =
ET,S

G
1/g
c

, (7.10)

3Sometimes, especially in the cases when the fading is slow, an appropriate performance
criterion could be the maximum probability of outage, but we will for brevity focus on a
bit error rate criterion. In Björnemo et al. (2007) we used the outage capacity and arrived
at similar numerical results as we do here.
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or equivalently, using the transmission-to-processing ratio ρ from (2.7), as

ρcM =
ρS

G
1/g
c

. (7.11)

We have here assumed that all system and transmission parameters not
mentioned, such as noise figures and ambient noise levels, are identical for
the two schemes.

Receive cooperation. The last transmission energy term we need to con-
sider is the sum of the nr − 1 point-to-point transmission energies consumed
during the gathering of the received symbols at node R. For each transmis-
sion n = 1, 2, . . . , nr − 1, let

ETr(n) ≡ the transmit energy of transmission n. (7.12)

Summing the nr − 1 transmission energies and normalising with respect to
the receiver processing energy EPt we obtain

ĔTr =
nr−1∑
n=1

ETr(n)

EPt

=
nr−1∑
n=1

ρr(n),

(7.13)

where ETr is the total transmission energy per bit.

Total transmission energy. In summary, we obtain the total normalised
transmission energy by summing (7.7), (7.11) and (7.13). The result is given
by

ĔT = u(nt − 2)ρt + ρcM +

nr−1∑
n=1

ρr(n)

= u(nt − 2)ρt +
ρS

G
1/g
cM

+

nr−1∑
n=1

ρr(n).

(7.14)

If we use nt = 1 and nr = 1 in (7.14) it reduces to the SISO long-range
transmission-to-processing ratio ρS since GcM then is one.
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7.2 Total energy comparison

As usual, we study the energy saving factor w through the relation

(1− w)Etot,S = Etot,cM, (7.15)

where Etot,S and Etot,cM are the total energy consumptions per bit for SISO
(S) and cooperative MIMO (cM) respectively (recall from (2.3) that Etot =
ERP + ET). By the use of (7.6) and (7.14) and their normalised energies we
obtain

(1− w) (1 + α+ ρS) = (u(nt − 2) + (nt − 1)α+ u(nt − 2)ρt)

+

(
1

Rc
(nt + nrα) +

ρS

G
1/g
cM

)

+

(
(nr − 1)(1 + α) +

nr−1∑
n=1

ρr(n)

)
,

(7.16)

where the left hand side is the total normalised energy per bit required
for a SISO transmission while the right hand side is its cooperative MIMO
counterpart. In the calculations below we will omit the impact of the trans-
mission energies expended before and after the long range transmission; we
henceforth set

ρt = 0

ρr(n) = 0
(7.17)

for all n. This will favour cooperative MIMO somewhat but for short intra
cluster distances between the cooperating nodes the error will be negligible.
We proceed by solving (7.16) for w, and we find that

w =
(
1− G

−1/g
cM

) ρS

1 + α+ ρS

−
1

Rc
(nt + nrα) + (u(nt − 2) + nr − 2) + (nt + nr − 3)α

1 + α+ ρS
.

(7.18)

In (7.18) we observe that the first term on the right hand side is the fraction
of energy saved by the cooperative MIMO gain GcM, but the second term
gives the penalty in terms of increased processing energy caused by the coop-
eration. By the use of (7.19) we can establish a fundamental limit regarding
the energy-efficiency of cooperative MIMO relative to SISO.
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7.2.1 Lower bound on the transmission-to-processing ratio

By solving (7.16) for the transmission-to-processing ratio, and inserting w =
0, we obtain the threshold

ρ̃S =
1

Rc
(nt + nrα) + (u(nt − 2) + nr − 2) + (nt + nr − 3)α

1− G
−1/g
cM

(7.19)

First, we note the following regarding (7.19). The threshold transmission-
to-processing ratio ρ̃S is increasing with the number of cooperating nodes
nt and nr. It also increases with decreasing code rate Rc. Of course, ρ̃S

decreases with the gain GcM.
Next, let us be maximally optimistic regarding cooperative MIMO and

assume that GcM → ∞ at code rate Rc = 1. The resulting bound on ρ̃S is
then

ρ̃S,optimistic = (nt + nr + u(nt − 2)− 2) + (nt + 2nr − 3)α. (7.20)

The above expression simply states that the transmission energy in the SISO
approach must be at least as large as the additional processing energy in the
cooperative approach. The smallest MIMO configurations are 2 × 1 MIMO
and 1× 2 MIMO. For these cases

ρS21,optimistic = 2 + α, (7.21)

ρS12,optimistic = 1 + 2α, (7.22)

represent the absolutely smallest transmission-to-processing ratios required
in the SISO approach to render cooperative MIMO attractive from an energy
point of view. For 2× 2 MIMO we obtain

ρS12,optimistic = 3 + 3α, (7.23)

which reveals a sizeable increase with respect to the smaller schemes. Com-
paring with the examples of existing nodes which we have given in Sec-
tion 2.2.2, we see that very few of them can operate at the lowest limit,
which for α = 1 is ρS,optimistic = 3. We are again, like in Chapter 6, see-
ing that current nodes seem to be slightly too processing dominated to reap
the full energy gains from non-cooperative, that is single-hop SISO, commu-
nication. They will be forced to cooperation by their limited transmission
range.



Chapter 7. Cooperative MIMO 215

7.2.2 Achieved energy savings

Wennström (2002, p. 111) has shown that the diversity order gain of orthog-
onal space-time block codes over ntnr independent Nakagami-m channels
is precisely ntnr (a series expansion of (7.8) confirms this). In this respect
there is no difference between the use of transmit cooperation or receive co-
operation, but, since we in our use of orthogonal space-time block coding
(STBC) assume that channel state information is available on the receiver
side only, receive cooperation will benefit from an array gain nr which is
absent in the case of transmit cooperation.4 Considering further the di-
minishing returns from increased diversity and the increasing cooperative
processing costs, we find that 1 × 2 MIMO will be the primary alternative
to a direct SISO transmission. Larger MIMO constellations will spend sig-
nificantly more processing energy – due an increased number of cooperating
nodes and possibly also a lower code rate Rc – and can only be motivated
when the 1× 2 MIMO constellation becomes too transmission-dominated in
its energy consumption (just like two hops always comes before three hops
on the transmission-to-processing scale).

Uncertainty regarding the degree of fading. Basically, the reason that
cooperative MIMO has the potential to drastically reduce the transmission
energy is the poor performance of fixed-power SISO, rather than very good
MIMO performance, in severely fading environments, for instance Rayleigh
fading m = 1. Hence, the channel parameter of primary interest is here the
Nakagami-m fading figure m. We would like to stress its importance again
because of the prevalence of the pure-Rayleigh assumption in the literature,
in spite of several studies showing the inadequacy of this assumption.5 Our
uncertainty regarding the Nakagami-m fading figure is quantified in (2.85)

4Our analysis is limited in this respect; we do not study the potential benefits from
beam-forming or spatial multiplexing. However, the former requires tight transmit syn-
chronisation and we comment on the problems of synchronisation in Section 7.5. The
latter approach has no diversity advantage, which is the topic here.

5To head off a possible misunderstanding: we do not oppose to the assignment of a
Rayleigh distribution given that our background channel knowledge consists of average

received power ; it is then the maximum entropy assignment and thereby well motivated.
What we do object to is the assignment of a Rayleigh fading distribution when it is known

that other constraints on the fading are generally active, see Section 3.3.2 for a discussion.
Our use of one additional constraint, leading to the Nakagami-m fading distribution as the
maximum entropy solution, is by no means the “final solution”, but it does at least take
the first order effects of other constraints into account (even if it is a weakness that the
particular constraint in (2.64) on page 46 is difficult to motivate strongly on theoretical
grounds).
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Figure 7.2: Energy saving w, as a function of the SISO transmission-to-
processing ratio ρS, achieved by a 1 × 2 cooperative MIMO scheme for
target bit error rates B = 10−3 (lower curves) and B = 10−6 (upper curves)
respectively. The percentiles come from our probability distribution for
m in (2.85), and correspond directly to the percentiles for w. All results
pertain to normalised receive energy α = 1 and power amplifier degradation
exponent g = 2.

on page 54). We include in our results the median, the 5th percentile and the
95th percentile to present one likely result with error bars corresponding to
90 percent of the probability. Due to the fact that the transmission energy
gain GcM increases monotonically with decreasing fading figure m we can in
our calculations use

w5 ↔ m95 = 17.5

wmed ↔ mmed = 1.88

w95 ↔ m5 = 1.05.

(7.24)

Numerical results

In Figure 7.2 we show the energy saving w, under our uncertainty in the
m parameter, as achieved by a 1 × 2 MIMO transmission. We include two
different target bit error rates, namely B = 10−3 and B = 10−6. From
Figure 7.2 we observe the following.
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• In severe fading, m5 = 1.05, and under a tough target bit error rate
B = 10−6, the threshold transmission-to-processing ratio ρ̃S comes
close to the optimistic threshold in (7.22) thanks to a very large gain
GcM ≈ 424 (26 dB).

• There are good chances to save energy if ρS > 5, and the energy savings
become consistent for ρS > 10. This is however more than currently
available nodes regularly manage.

We reach, under the present circumstances, the following conclusion.

Currently available node radios will generally not benefit energy-
wise from cooperative MIMO-STBC even if they apply a link
margin approach against the fading.

Differing conclusions

Why do we come to a quite different conclusion than other published works?
For instance, in the well cited paper by Cui et al. (2004) it is stated that
“tremendous energy saving is possible for transmission distances larger than
a given threshold, even when we take into account the local energy cost nec-
essary for joint information transmission and reception”. While this is of
course in a sense true6 the problem is that the threshold distances given by
Cui et al. (2004) correspond to a larger transmission-to-processing ratio than
currently available nodes manage. We saw in Example 2.1 on page 20 how
a threshold distance can change several orders of magnitude with relatively
minor changes in the model parameters, yielding a potentially misleading
conclusion. In the present case it is the link margin and the fading figure
that make the difference: Cui et al. (2004) make use of a 40 dB link mar-
gin and a pure-Rayleigh assumption, thereby boosting the radiated energy
per bit by several orders of magnitude. Unfortunately these assumptions
are carried over to most citing papers, and nobody has, as far as we know,
questioned the appropriateness of these assumptions. Considering our re-
sults on polarisation diversity and power control, together with practically
available maximum transmission-to-processing ratios ρmax and practically
encountered fading figures m, it seems that most of the published results
are relevant only in a very limited range of practical situations. If we ever
come close to the required transmission-to-processing ratios, there is a good
chance that channel inversion and polarisation diversity are better alterna-
tives energy-wise than cooperation.

6Our calculations give the corresponding threshold in (7.19), and one can always set
up a scenario in which the transmission costs are totally dominant.
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7.3 Polarisation diversity or cooperative MIMO

In Chapter 5 we saw that a receiver utilising dual-branch polarisation di-
versity could facilitate a sizeable reduction in transmission energy at a pos-
sibly small increase in processing energy. The threshold transmission-to-
processing ratios ρ̃ were smaller than the optimistic thresholds (7.21) and
(7.22) for cooperative MIMO. Let us therefore study the choice between SISO
transmissions with dual-branch receiver diversity and cooperative MIMO
with simpler, single-antenna nodes. We assume that the diversity order gain
of the polarisation scheme Δ = 2, but that there is no array gain (this would
correspond performance-wise to the switched diversity scheme in Chapter 5).
Consequently, the transmission-wise difference between 1×2 MIMO and the
polarisation diversity reception is the array gain achieved by the cooperative
scheme – observe that this holds regardless of the fading figure m – yield-
ing a radiated-energy gain of GcM12 = 2. For larger MIMO systems the
gain will be larger. In Figure 7.3 we compare the two alternatives under
different processing costs for the polarisation diversity scheme. We show the
results against the SISO transmission-to-processing ratio ρS and, on the lower
horizontal axis, against the polarisation diversity transmission-to-processing
ratio

ρD =
ρS

G
1/g
D

, (7.25)

where GD is the diversity gain achieved by dual branch receiver diversity (D)
with respect to single branch reception. In the present case we use the median
fading figure mmed = 1.88 and the corresponding gain is then GD = 2.74,
see Chapter 5 and (5.4). The results reveal that only for transmission-to-
processing ratios ρS > 10 can we expect a cooperative approach to out-
perform the direct transmission approach. Extending the cooperation to a
1×3 MIMO transmission does not help much due to the increased processing
energy from cooperation. In terms of the transmission-to-processing ratio ρD

the threshold is approximately ρD = 6.
From this short analysis we draw the subsequent conclusion

Simple polarisation receiver diversity is preferred over coopera-
tive MIMO-STBC and its use moves the benefits from coopera-
tive MIMO to larger transmission-to-processing ratios ρ.
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Figure 7.3: Energy saving w, as a function of the SISO transmission-to-
processing ratio ρS, achieved by 1 × 2 and 1 × 3 cooperative MIMO over
a SISO system employing dual-branch polarisation receiver diversity; the
additional processing energy is assumed to be 0, 33 or 100 percent. Results
for 1 × 2 MIMO are independent of the fading figure m, while the results
for 1 × 3 MIMO pertain to mmed = 1.88. The lower horizontal axis is
the transmission-to-processing ratio ρD corresponding to the polarisation
receiver diversity scheme. In all cases B = 10−3, α = 1 and g = 2.

7.4 Multi-hop or cooperative MIMO

We have noted earlier, in Chapter 6, that cooperative schemes are penalised
by the abrupt increase in processing energy consumption caused by the in-
volvement of additional nodes in the transmission.7 This has made us favour
“gradual techniques” such as channel inversion and adaptive error correcting
codes, or inherently processing-cheap techniques such as switched receiver
diversity, over the cooperative schemes such as multi-hopping. Nevertheless,
at some stage the transmission energy becomes dominant enough to render
the cooperative schemes attractive energy-wise. There is a natural question
at this stage: should we resort to multi-hopping or cooperative MIMO?

7The exception to the rule being cases when substantial aggregation/fusion benefits
are readily available, reducing the processing costs of cooperation.
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There is a quite rich literature on cooperative relaying, including multi-
hop MIMO, and we wish to point out some differences between the present
work and the most common approaches to this subject. The existing litera-
ture on cooperative techniques mostly treats the capacity/throughput aspect
under transmit power constraints, without considering processing costs; see
for instance Laneman and Wornell (2003) and Coso et al. (2007). Important
and interesting as these results are, they do however address only half the
problem of communication energy-efficiency when they leave out the pro-
cessing part. Even if communication is possible at vanishing transmit power,
the total energy consumption is not necessarily small; some papers advo-
cate massive cooperation (hundreds of nodes) since it can reduce transmit
costs, but they entirely neglect the (massive) processing costs, see for in-
stance Bajwa et al. (2005). There are studies including processing costs –
see for instance Jayaweera (2006) – but they are, to the best of our knowl-
edge, all concerning the case of dominating transmission energy (large ρ).
Unfortunately, the dominance of the transmission energy is most often im-
plicit, hidden in a distance or similar. Therefore, our impression is that the
existing literature might give an overly optimistic view as to the possible
energy-wise benefits from cooperative diversity. Additionally, as we discuss
briefly at the end of this chapter, there are a number of practical issues that
are frequently overlooked. Our assessment is focussed on the impact of the
processing energy, and is by no means comprehensive in terms of cooperative
diversity schemes. Admittedly, there are many details regarding cooperative
diversity that we leave out when concentrating on orthogonal space time
block coding, but we believe that they are just details in comparison with
the larger, first-order, energy effects we are including.

Before proceeding, we make the following assumptions.

Dense network. If we are to ignore the transmission costs (and the inverse
diversity effects) during local MIMO cooperation – before and after
the long-range MIMO transmission – the cooperating nodes must lie
in close proximity of one another (here close is with respect to the
long-range distance d). Thereby we feel it is reasonable to invoke the
simplifying assumption that the relay nodes in the N -hop scheme are
optimally positioned at fractions d/N of the total distance.

Equal amount of aggregation and fusion. We do not include packet ag-
gregation or data fusion in the comparison since both schemes should
have similar possibilities to benefit from them; if sampled data are
redundant in one case, it ought to be it in the other.
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Energy constrained destination. For simplicity we assume that the des-
tination node R has the same energy consumption as the other nodes,
meaning that αR = α.

Both techniques, multi-hop and MIMO, reduce transmission energy, but
they do so by very different means and are successful in diametrically opposed
fading scenarios. Cooperative MIMO draws its benefits from diversity and
the resulting resilience to fading, while multi-hopping suffers from “inverse
diversity”, see Definition 6.1 on page 171, and must rely on propagation loss
reduction. By use of the energy consumption of uncoded multi-hop as given
in Section 6.2, equation (6.8), we obtain

Ĕtot,NH =
Etot,NH

EPt

=
N(EPt + EPr + ET,NH)

EPt

= N(1 + α) +N
1+ 1/m−κ

g ρS.

(7.26)

By the use of the cooperative MIMO counterpart Ĕtot,cM, the righthand side
in (7.16), we find that the fraction of energy saved by the use of cooperative
MIMO with respect to multi-hop is given by

wcM =
Ĕtot,NH − Ĕtot,cM

Ĕtot,NH

=

(
N1+

1/m−κ
g − G

−1/g
cM

)
ρS

N(1 + α) +N
1+ 1/m−κ

g ρS

+

(
N + 1− u(nt − 2)− nt

Rc
− nr

)
+

(
N + 1− nt −

(
1 + 1

Rc

)
nr

)
α

N(1 + α) +N1+
1/m−κ

g ρS

,

(7.27)

where the first and last terms represents the difference in transmission energy
and processing energy respectively. For each ρS we choose the energy-optimal
number of hops and the energy-optimal nt × nr cooperative MIMO scheme.

Over the range of transmission-to-processing ratios we consider here, our
numerical searches have not resulted in more than two transmit nodes, nt =
2, even under the favourable assumption that the space-time block code rate
Rc = 1 for all nt (it can be shown that Rc < 1 for all nt > 2 (Larsson
and Stoica, 2003, App. B)). We therefore make the following simplifying
assumption.
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Figure 7.4: Comparison between N -hop and nt × nr MIMO, shown as the
energy saving wcM of (7.27). The flat portion of the curves correspond to
single-hop SISO. All curves were calculated for α = 1 and g = 2.

Assumption 7.1 An orthogonal space-time block code with code Rc = 1 can
be found for all the MIMO systems of present interest.

As usual we include the uncertainties in the Nakagami fading figure m
and the propagation loss exponent κ by use of the probability distributions
given in (2.85) and (2.79). More precisely, we use the absolute-error optimal
estimates, the medians mmed = 1.88 and κmed = 3.32, together with the 5th
and 95th percentiles m5 = 1.05, κ5 = 2.00, m95 = 17.5 and κ95 = 5.12. We
study the energy saving over a large range of SISO single-hop transmission-
to-processing ratios8 ρS in Figure 7.4, using combinations of the percentiles to
illustrate the uncertainty. First, there is a striking spread in the results, but
this was not unexpected because of the diametrically opposed impact that
fading has on multi-hop and cooperative MIMO respectively. When fading is
not severe, multi-hop can outperform cooperative MIMO (the curves that are
below the horizontal axis), but it seems that cooperative MIMO is slightly

8Remember that the concentration of the transmission-to-processing ratios for multi-
hop and cooperative MIMO, ρNH and ρcM, will keep the actual transmission-to-processing
ratio below ρS. However, the figure becomes too difficult to interpret if we use ρNH or ρcM

on the horizontal axis – there will be abrupt changes in the transmission-to-processing
ratios as observed in Figures 6.4 and 6.5.
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more energy efficient overall. For instance, when we consider the median
values mmed and κmed, the negative effect that the fading has on multi-hop
outweighs the gain from shorter hops and cooperative MIMO offers a lower
energy consumption.

7.4.1 Polarisation diversity receivers

The inherent problem of the multi-hop approach is its sensitivity to fad-
ing, manifested in Figure 7.4, and we have previously advocated the use of
polarisation receiver diversity to counter fading, see Chapter 5. Consider
therefore a dual-branch receiver with diversity order gain Δ = 2, array gain
AD = 1 (see Definitions 3.4 and 3.1) at an additional receive processing cost
of 10 percent

αD =
EPr,D

EPt
=
1.10EPr

EPt
1.10α. (7.28)

This would roughly correspond to a simple switched diversity (SwD) receiver
with 10 percent extra transmissions. Note that if we were to use for instance
maximum ratio combining, the array gain AD would be larger but also the
additional processing cost. Our results do not cover all possible alternatives
but ought to provide useful indications.

We now compare the use of multi-hop and polarisation receiver diversity
on the one hand, with cooperative MIMO with single-antenna radios on
the other. The energy consumption, as usual normalised by the transmit
processing energy per bit, becomes

Ĕtot,NH,D =
Etot,NH,D

EPt

=

N

(
(EPt + EPr +

(
ET,NH

GD

)1/g
)

EPt

= N(1 + αD) +N

(
N1/m−κ

GD

)1/g

ρS,1H,

(7.29)

where ρS,1H is the SISO single-hop transmission-to-processing ratio and GD is
the dual-branch receiver diversity gain which depends on the fading figure m
and the target bit error rate B (see Chapter 5). Figure 7.5 shows the expected
impact that the multi-hop scheme performs significantly better in severe fad-
ing if receiver diversity can be exploited. Note that when the curves are below
wcM = 0, the multi-hop, receiver diversity, approach is better, while the co-
operative MIMO, single antenna, approach is preferable otherwise. The extra
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Figure 7.5: Comparison between cooperative MIMO with single-antenna
nodes, and N -hop communication with dual-branch receiver diversity (no
array gain assumed). The receiver diversity alleviates the multi-hop scheme
from much of its inverse diversity burden and gives it a slight advantage
over cooperative MIMO.

processing incurs a slight penalty for small transmission-to-processing ratios.
Regarding Figure 7.4 we feel that the following observations are motivated.

• For transmission-to-processing ratios ρS,1H < 5, the comparison is es-
sentially between SISO with, and SISO without, polarisation receiver
diversity. This is because 1×1 MIMO, that is to say SISO, is included
as a special case of MIMO in the calculations. The sharp turns in the
solid curves correspond to the switch from SISO to 1× 2 MIMO.

• The polarisation receiver diversity scheme has a significantly smaller
processing cost than the cooperative schemes. Hence, it provides an
advantage over cooperative MIMO for transmission-to-processing ra-
tios ρS,1H < 10, and remains a good alternative up to ρS,1H ≈ 20.
Upon comparing Figure 7.5 with Figure 7.4 the difference is evident:
polarisation receiver diversity improves the multi-hop energy efficiency
significantly for severe fading, that small m.
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7.5 Concluding remarks

Cooperative MIMO based on orthogonal space-time block codes provides
a reduction in transmission energy which is substantial for severe fading,
but the cooperative approach achieves this at a relatively large processing
energy cost. It is therefore advisable to consider less processing intensive
diversity schemes before resorting to cooperation, and our results show that
polarisation receiver diversity makes cooperative MIMO significantly less
attractive.

Regarding longer distances, when dual-branch receiver diversity is not
enough to sustain energy efficient single-hop, our our analysis shows that
the choice between multi-hop and cooperative MIMO is not easily settled.
The reason is that the propagation loss exponent κ and the Nakagami fad-
ing figure m have significant impact on the outcome, and under our present
uncertainty we can not draw a general and firm conclusion. If we consider
single-antenna radios only, see Figure 7.5, the cooperative MIMO scheme
outperforms multi-hop for most – but not all – scenarios, mainly because
the multi-hop transmission energy is significantly increased by the inverse
diversity effect in Definition 6.1. The use of dual-branch receiver diversity
results in a substantial reduction of this inverse diversity effect, see Fig-
ure 7.4. Multi-hop communication needs some form of processing efficient
diversity to perform well, and our suggestion is to then use polarisation re-
ceiver diversity.

Ignored facts and simplifying assumptions. To put our results in per-
spective, we wish to stress some neglected issues and the influence of the
simplifying assumptions we have utilised.

Channel inversion. As shown in Chapter 4, the use of channel inversion
in place of a fixed link margin can reduce the total energy consumption
for transmission-to-processing ratios ρ > 1/2. Therefore, given that a
nodes ρmax is large enough, the use of channel inversion will reduce
the relative benefits from cooperative MIMO. Especially if we combine
channel inversion through transmit power control with receiver diver-
sity, large gains ought to be achieved, and multi-hop would then be
less affected by severe fading.

Node positions. The present analysis assumes ideal placement of cooper-
ative nodes, both for multi-hop and for MIMO-STBC. If the network
is not very dense with respect to the end-to-end distance, the lack of
appropriate collaborators can constitute a problem. The use of widely
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spaced cooperative MIMO nodes may introduce non-negligible inverse
diversity effects, and we have already studied the effects of position
uncertainty on multi-hop in Chapter 6.

Synchronisation. We have presupposed that the MIMO nodes are per-
fectly synchronised in their transmissions and receptions. Achieving a
high degree of synchronisation is not easy, and any errors can only be
negative for the cooperative MIMO performance Jagannathan et al.
(2004).
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Appendix 7.A MIMO-STBC bit error rate

According to Wennström (2002), orthogonal space-time block coding over ntnr

identical and independent Nakagami-m fading channels achieves an array gain nr.
Therefore, the combined average received signal-to-noise ratio per bit is γcM = nrγ.
Because of the fact that the ntnr channels, each with a gamma distribution

p(γ|m, γ, I) =
mm

Γ(m)γm γm−1e−m γ
γ (7.30)

for its signal-to-noise ratio per bit, are combined in a coherent fashion, the resulting
instantaneous signal-to-noise ratio per bit γcM has the distribution

p(γcM|nt, nr, m, γ, I) =
(mntnr)

mntnr

Γ(mntnr)(nrγ)mntnr
γmntnr−1e−mntnr

γcM
nrγ . (7.31)

Wennström (2002) shows that the diversity order gain is ntnr, which exactly corre-
sponds to going from (7.30) to (7.31). Now, by use of the bit error rate expression
for (square) quadrate amplitude modulation given in (4.59) on page 125, we can
find the average bit error rate by the use of mathematical software (Wolfram Re-
search Inc., 2007), or tabulated integrals (Gradshteyn and Ryzhik, 2000);

B =

∞∫
0

B(γcM)p(γcM|nt, nr, m, γ, I)dγcM

= (−1)−mnrnt
2

b
√

π

√
2b − 1√
2b

Γ
(
mnrnt +

1
2

)
Γ(mnrnt)

× β

(
−2

(
2b − 1

)
mntRc

3bγ
, mnrnt,

1

2
− mnrnt

)
.

(7.32)





Chapter 8
Network Measurement Capacity

OUR focus has thus far been on energy consumption, but is energy effi-
ciency really the adequate metric for the network as a whole? Certainly,

in many sensor networks energy will constitute a limited resource which must
be spent judicially if long-lasting network functionality is to be sustained at
a sufficient level of quality. Energy efficiency is then a positive feature of,
say, a transmission scheme. But, as we noted in the beginning of Chapter 6,
aiming only for energy-efficiency may lead to unbalanced work load among
the sensor nodes with degraded network operation as a consequence. Intu-
itively, we want to avoid severely unbalanced load in a sensor network due
to the detrimental effects it may have, for example through rapid energy de-
pletion in certain regions of the network. On the other hand, we realise that
requiring a perfect load balance may cause very energy-inefficient operation.
Indeed, as Perillo et al. (2004) find in their study of the energy imbalance
problem, “energy balancing can be achieved only at the expense of gross
energy inefficiencies”.

At the heart of the matter is the fact that energy is not a central sensor-
network resource, but a distributed resource with energy ’quanta’ residing in
individual nodes. By contrast, the performance of the network is generally
perceived in holistic terms, and we do not actually care about the individual
nodes as long as the network as a whole operates satisfactorily.

The topic of this chapter is the development of our notion of measurement
capacity as a network-wide common resource. The measurement capacity
is based on the number of different sequences of events/requests that the
network can respond to at a given energy budget, and it thereby entails
both energy efficiency and load balancing. In other words, it is a measure

229
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of the network’s readiness to respond to any one of a large class of different
events and/or measurement requests. It is the size of the class of possible
events/requests that defines the measurement capacity, and in this sense it
bears resemblance to the capacity of a (noiseless) channel as its readiness
to transmit any one of a large class of messages.1 We present here the first
steps in the development of measurement capacity and later in the chapter
we use it for assessment of multi-hopping in shadowed and non-shadowed
environments. We finally make an initial assessment of the benefits from
heterogeneous hierarchical networks in terms of measurement capacity.

8.1 Measurement capacity as the event multiplicity

Consider an M node network with a topology, sensing task, communication
structure and energy allocation that allows node m to make nm measure-
ments (including all processing and transmission cost). The network can
perform N =

∑
nm measurements in total and we can relate this situation

to our initial discussion of energy efficiency and load balancing as follows:

• A design strategy based on energy efficiency would implicitly address
maximisation of N , the total number of measurements.

• A design strategy based solely on even load distribution among nodes
would aim for identical nm, whatever the consequences for N .

Our proposal is to consider the number of different measurement/event se-
quences that the network can meet successfully. This number will measure
the network’s readiness to respond to different tasks, its flexibility to meet
an unknown future of events/requests. The number of different ways to dis-
tribute N measurements such that node m perform nm of them is given by
the multinomial coefficient

W =
N !

n1!n2! . . . nM !
, (8.1)

see for instance (Sivia, 1996). The reader might at this point anticipate where
we are heading by recalling the Wallis derivation of the Shannon entropy (see
Section 2.3.2 on page 37). By the use of the Stirling approximation in (2.38)

1We have borrowed the words from Jaynes (2003, p. 629).
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on page 38 we can, for large nm, write

log (W ) ≈ N log(N)−
M∑

m=1

nm log(nm)

= −N

M∑
m=1

nm log(nm),

(8.2)

where nm = nm/N are the normalised numbers of measurements at each
node.2

The log(W ) term can be viewed as the size of the class of all measure-
ment sequences that the network can handle, and in (8.2) we see that it
can be approximated by the entropy −

∑
nm log(nm) of the measurement

distribution nm, weighted by the total number of measurements N .

Generalisation from nodes to measurement cells. Depending on the
application and the sensor deployment, nodes may or may not constitute
the adequate “space” on which we define the number of measurement nm.
In some scenarios, for instance when several nodes are placed very close to
each other and cover the same spatial area of interest, it is more appropriate
to think of the network as consisting of M cells from each of which nm

measurements can be obtained: the cells constitute the definition of our
“measurement space” (we elaborate on the choice of cells in Section 8.1.2).

Definition 8.1 The measurement capacity of an M cell sensor network is

C ≡ −N
M∑

m=1

nm log(nm), (8.3)

where nm is the number of measurements obtainable from cell m and N is
the total number of measurements: nm = nm/N and N =

∑M
m=1 nm.

2To be precise, the Stirling approximation contains an additional term, yielding the
more accurate approximation

log (W ) ≈ −N

M∑
m=1

nm log(nm) −
1

2

M∑
m=1

log
( nm

N1/M

)
.

As N grows very large, the absolute error in (8.2) will grow without bound, but the
relative error is small since the first term in the above expression – the term we use in
(8.2) – grows much faster with N than the second – the absolute error term which we
have discarded.
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Observe that nothing prevents cells and nodes from being equivalent in some
applications – indeed, it seems reasonable that deployments actually should
be conducted in a manner that yields one node per cell.

Remark 8.1 Remember that our definition of the measurement capacity
rests, through our use of the Stirling approximation (2.38), on the assumption
that all nm are large. For small nm we should go back to the multinomial
term W in (8.1). Observe that if one nm = 0, its corresponding factor
nm! = 0! = 1 in the denominator of the multinomial coefficient (8.1) and
the problem is essentially reduced to M − 1 cells (or nodes). Cells (nodes)
close to complete exhaustion thus contributes very little to the measurement
capacity.

For illustration, let us compare the measurement capacity metric C with
the two related approaches of load balancing and minimisation of energy
consumption.

Load balancing. The maximum entropy for nm is attained by a uniform
distribution – a balanced load – of the normalised measurement capa-
bility nm = 1/M (see Section 2.3.3). The entropy factor −∑

nm log(nm)
in (8.3) thus captures the intuitive feeling that it is good to distribute
the load uniformly over the nodes (cells) in the network: an even dis-
tribution of nm leads to a greater “readiness” of the network.

Energy efficiency. Adoption of an energy efficiency strategy would mean
maximisation of N : make the design choices that achieves the max-
imum number of measurements per unit energy. The measurement
capacity (8.3) anticipates the benefits from energy efficiency through
the N factor: more measurements increase the network’s “readiness”
to encounter many different scenarios.

In C we have a metric that combines an even load distribution with energy-
efficiency in a way that measures the network’s readiness to handle many
different event sequences.

8.1.1 Properties of the measurement capacity

Before we proceed, we shall point out four important properties of the mea-
surement capacity C in (8.3).

More energy increases measurement capacity. If we double the en-
ergy resource at each node such that n′m = 2nm, the network mea-
surement capacity is doubled, C′ = 2C. There is a linear increase in
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C with N as long as the distribution nm does not change. Thereby, if
the distribution nm is kept constant throughout the network’s period
of operation, there is through N a direct correspondence between the
measurement capacity C and energy efficiency.

The cost of a measurement. All measurements will reduce the remain-
ing measurement capacity, but the single measurement which reduces
the measurement capacity the most is the one performed by the sensor
with the smallest nm. The use of the sensor with the largest nm will
cause the smallest reduction in measurement capacity. All measure-
ments cause the same decrease in the total number N , but exploiting
the sensor with smallest nm accentuates the existing unbalance.

Hierarchical capacity. Forming a larger network by combining K net-
works with respective sensing capacities Ck will increase the measure-
ment capacity to

C = C′K +

K∑
k=1

Ck, (8.4)

where

C′K = N log(N)−
K∑

k=1

Nk log(Nk) (8.5)

is the measurement capacity of the super network made of K sub-
networks with Nk measurements each, N =

∑K
k Nk, and

Ck = Nk log(Nk)−
Mk∑

m=1

nmk
log(nmk

) (8.6)

are the sensing capacities of the sub-networks, where Nk =
∑Mk

mk=1 nmk
.

Here, Mk is the number of cells (nodes) in sub-network k, and nmk
is

the number of measurements that cell (node) mk = 1, 2, . . . ,Mk in
sub-network k can perform. We can confirm the relation in (8.4) by
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the use of (8.5) and (8.6),

C =C′K +

K∑
k=1

Ck

=

(
N log(N)−

K∑
k=1

Nk log(Nk)

)

+

K∑
k=1

(
Nk log(Nk)−

Mk∑
m=1

nmk
log(nmk

)

)

=N log(N)−
K∑

k=1

(
Mk∑

m=1

nmk
log(nmk

)

)

=N log(N)−
M∑

m=1

nm log(nm),

(8.7)

where the last line is precisely the measurement capacity C in Defi-
nition 8.1. The measurement capacity of combined networks is larger
than the sum of their individual sensing capacities.

Single cell networks. If there is only one cell left with measurements, cell
k say, then nk = N and all other nm�=k = 0. Consequently, measure-
ment capacity is zero,

C = N log(N)− nk log(nk) = 0. (8.8)

At first, this might seem an undesirable property of the metric, be-
cause then the number of measurements N has no importance. Let
us therefore consider the hierarchical capacity (8.4) above. From the
large-scale perspective in which there is only one cell, the measure-
ment capacity C′K in (8.5) is zero because only one sequence of mea-
surements can be performed. However, if the macro-cell has internal
cells k = 1, 2, . . . ,K, it is only the “macroscopic” capacity C′K in (8.4)
that is zero. The subcell capacity Ck in (8.6) is non-zero and the total
capacity is thus non-zero. Once we get down to an individual sensor
node, it is only the “internal cell space” of that sensor node left. For
instance, if we have one sensor node that detects the presence of a
target, then it has two internal cells and a non-zero measurement ca-
pacity. It is only if the sensors have only one response (one output)
that the measurement capacity becomes zero.3

3And such sensor are of course useless.
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This last point regarding the single cell network and “internal cells” raises
the question of how to define the cells appropriately.

8.1.2 Defining the correct measurement space

There are apparently connections between our measurement capacity and the
Shannon entropy. With regard to the entropy of a probability distribution,
and its maximisation in inference problems, it is important to note the role
of the hypothesis space with respect to which the entropy is defined. We
encountered this subtlety in Example 2.3 on the Poisson distribution, where
an apparently correct application of the principle of maximum entropy was
lead astray by our use of the wrong hypothesis space4. The following remark
is worth contemplating:

[T]he simple, unqualified term ’entropy’ is meaningless; it is al-
ways defined with respect to some basic ’measure’ and the result
of maximizing it depends not only on the constraints, but also
on the measure. The difficulty in applying maximum entropy to
problems outside thermodynamics is not in deciding what con-
straints should be applied, but in deciding what is the underlying
measure – or, as I prefer to call it, what is the hypothesis space
on which our entropies are defined?

Jaynes (1985)

Jaynes’ words appear in his paper on entropy and search theory where he
points to the cogency of the sizes of the searched cells when devising an
optimal target search plan on information theoretic grounds. The choice of
cell sizes amounts to a choice of hypothesis space, and therefore it is not only
the probability of finding the target in a cell that is important: the size of
each cell must be taken into account when planning the search.

In the present context of measurement capacity we face a similar sit-
uation since the capacity C results from our definition of the number of
measurements per cell nm – that is our definition of the measurement space.
This is emphasised by considering the hierarchial relationship in (8.4) and
the discussion of single-cell capacity above. Just like for inference problems,
where the question of the correct hypothesis space is open ended and can not
be settled once and for all, the question of the correct measurement space
can not be given an all-encompassing answer. In some cases the node space

4The hypothesis space we choose to work on implicitly defines our ignorance measure
q(x) which is subsequently used in the MaxEnt procedure, Section 2.3.3.
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will be perfectly adequate as a measurement space (each node forming a
cell), but in others it will definitely not be a good choice (for instance when
measuring a distributed field with all sensors at the same time).

We believe that it is the definition of the measurement space that is
the key to successful use of C in sensor network design, but it is also the
most difficult step, and it is application specific. Therefore, unless otherwise
stated, it is henceforth simply assumed that the measurement space we use
is adequate for the application.

8.1.3 Connecting energy and measurements

The measurement capacity is defined in terms of the number of measurements
per cell nm, but these numbers are of course dependent on several properties
of the sensor network. For example, the energy consumed by the collection
of a sensor reading, the energy consumed by wireless communication of the
data, the energy available in the cell’s nodes’ batteries and the topology of
the network all influence the numbers nm.

Let us for simplicity start by assuming that each node in cell m reports
directly to the central sink at a per-measurement energy cost sm > 0, includ-
ing the communication costs that may vary significantly across the network.5

We then have a network with the measurement capacity

C = N log(N)−
M∑

m=1

nm log(nm)

=

(
M∑

m=1

Em

sm

)
log

(
M∑

m=1

Em

sm

)
−

M∑
m=1

Em

sm
log

(Em

sm

)
,

(8.9)

where Em  sm is the energy resource in the mth cell. Consider now the
problem of determining the optimum distribution of a total amount of en-
ergy Etot among the cells. This corresponds to some extent to the uneven
deployment approach to counteract load imbalance, see for instance Rivas
et al. (2006) or Prasad and Agrawal (2007). We formulate the optimisation
problem

max
{Em}

(
M∑

m=1

Em

sm

)
log

(
M∑

m=1

Em

sm

)
−

M∑
m=1

Em

sm
log

(Em

sm

)
(8.10)

5Observe that no cooperation among nodes is assumed for simplicity. Inclusion of
cooperative transmissions, such as multi-hopping, makes the expression much more com-
plicated due to the interconnections between the number of measurements at the nodes.
We consider the multi-hop case later in Section 8.2.
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such that
M∑

m=1

Em = Etot. (8.11)

We can readily address this constrained maximisation problem by the use of
Lagrange multipliers, whose application lead to the system of M+1 equations

Ek = sk

(
M∑

m=1

Em

sm

)
e−λsk , k = 1, 2, . . . M (8.12)

M∑
m=1

Em = Etot. (8.13)

Lacking an analytical solution for the Em, we can still gain some insight into
the optimum solution by noting that (8.12) can be restated as

nk =
Ek

sk

(
M∑

m=1

Em

sm

)−1

= e−λsk , k = 1, 2, . . . M. (8.14)

From this we conclude that energy should be distributed so that the fractions
of all measurements thereby allocated to the cells decay exponentially with
the sensing cost sm. This fact highlights the compromise between obtaining
many measurements, large N , and spreading them evenly, even-sized nm’s.
If we instead, hypothetically, would have a fixed number of measurements to
distribute, the largest measurement capacity would be achieved by a uniform
distribution. The above energy distribution is in exact correspondence with
the Shannon capacity for a noiseless channel when the symbols have different
transmission time sm (Jaynes, 2003, pp. 630–632).

Before we, armed with the measurement capacity in (8.3), return to the
assessment of multi-hop as an efficient transmission technique, let us outline
work related to our measurement capacity.

8.1.4 Related work.

We have found three broad topics that are relevant to discuss in the present
context.

Network lifetime. A commonly used network-wide metric is the net-
work’s lifetime, proposed by Chang and Tassiulas (1999) to be the time
of operation until the death of the first node. This network lifetime metric is
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widely used and does in some sense combine both energy efficiency and en-
ergy balance.6 There are a number of other, related, lifetime metrics, defined
on the number of functioning nodes, the network’s coverage, the connectivity
of the network, etc. A survey is given by Dietrich and Dressler (2006) and
the interested reader is referred to their report for further reading. Cheng
et al. (2008) have recently performed a quite thorough study of deployment
strategies under the sensor network lifetime metric of Chang and Tassiulas
(1999). They conclude, among other things, that “A good sensor network
deployment strategy is one that achieves both energy balance and energy
efficiency”.

While the network lifetime metric captures important aspects of the sen-
sor network’s ability, it has some shortcomings. First, a sensor network is
not completely useless as soon as one node stops functioning, except possibly
in some very rare application (robustness against node failures is moreover
important and a research topic of its own). If, say, 99 out of 100 nodes are
operational we can likely still put the network to good use, although the net-
work has inexorably become less useful as nodes have stopped functioning.
Second, the metric focuses on the worst case only and does not encourage
purposeful use of the other nodes’ resources as long as they fare better than
the most short-lived node. Mhatre et al. (2005) hold that it is “important to
ensure... that almost all the nodes expire at about the same time” because
under the lifetime metric all residual energy is considered wasted energy.
Chen and Zhao use the expected lifetime “measured as the average amount
of time until the network is considered nonfunctional” (Swami et al., 2007,
Ch. 5). Also here residual energy is a concern and it is argued that toward
the end of the lifetime it therefore becomes important the balance the load
in the network.

In our measurement capacity C we have found a metric that combines an
even load distribution with energy-efficiency, and we believe that it makes
precise the conclusion by Cheng et al. (2008) that “a good sensor network
deployment strategy is one that achieves both energy balance and energy
efficiency”. Good designs strike a balance between even load and energy
efficiency. Comparing measurement capacity with network lifetime, we note
the following difference: the measurement capacity allows heavy load on
individual nodes (cells) if the gains are large enough. More precisely, one or
a few nodes (cells) can be “sacrificed” to make it easier for the rest of the

6Quite commonly, the lifetime metric proposed by Chang and Tassiulas (1999) is mod-
ified to the be the time of operation until a certain percentage of the nodes run out of
energy.
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network: if the decrease in the entropy factor −∑
nm log(nm) is outweighed

by an increase in N the sacrifice is accepted, see (8.3). By contrast, when
one node is very heavily loaded, the network lifetime metric does not care
about any other nodes, and they must support the heavily loaded node at
almost any cost.

Sensing capacity. The concept of sensing capacity, as proposed by Rach-
lin et al. (2005) and Aeron et al. (2007), concerns only the sensing aspect.
The two notions of sensing capacity given by Aeron et al. (2007) and Rachlin
et al. (2005) are similar but not identical, and for brevity, we focus here on
the latter as described in Swami et al. (2007, Ch. 4). Rachlin et al. (2005)
models the network’s region of interest as divided into smaller spatial regions
– let us call them cells – in which targets are either absent or present. Each
sensor node observes one or several cells jointly, and the sensor output is
therefore possibly affected by several targets at a time. For instance, vibra-
tional sensors can detect signals from several vehicles at the same time. The
question that the sensing capacity of Rachlin et al. (2005) answers is: what
is the minimum number of sensors required to achieve a certain distortion
(a certain detection probability)?

In one sense, our measurement capacity and the described sensing ca-
pacity operate at the same level, the cells which form the underlying space
of interest. In another sense, the two metrics are on different levels as the
sensing capacity of Rachlin et al. (2005) concerns the achievable sensing per-
formance per sensor, while our measurement capacity concerns in how many
ways the network can be used to perform sensing, including sensing and com-
munication costs. It might be that the two approaches can be joined into
one more general metric; we provide in Appendix 8.A a few tentative gen-
eralisations of our measurement capacity C that could facilitate a combined
metric.

Bounds on communication capacity. Complementary to Rachlin et al.
(2005) and Aeron et al. (2007), there is also work that concerns mainly the
communication constraints in wireless sensor networks, see the chapter by
Gastpar in Swami et al. (2007, Ch. 2). The main topic is how to communicate
the sensed information most efficiently from the sensors under a constraint
for the distortion in the reconstruction of the desired quantity; which are
the ultimate limits for this network communication. The power constraint
typically concerns only radiated power, and as it has been shown that the
source-channel separation theorem does not hold, so-called analog techniques
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have been proposed in place of the digital one we commonly consider. The
basic approach is to amplify the observations at each sensor (no regular
source coding) and transmit them from all sensors coherently to achieve two
benefits. First, the sensor noise is averaged out in the channel. Second, the
received signal-to-noise power ratio is increased by the coherent combining
of the signals (Bajwa et al., 2005, Gastpar et al., 2006). The communication
bounds can of course be important, but in our framework it is total energy
consumption that is in focus.

8.2 Measurement capacity in multi-hop networks

In Chapter 6 (and partly also in Chapter 7) we assessed the energy effi-
ciency of multi-hopping as compared to direct transmission (and coopera-
tive MIMO). One main finding was that many of the present node radios,
due to insufficient output power, would be forced to use multi-hopping at
shorter ranges than motivated by energy-efficiency. We noted already then
that the energy-efficiency viewpoint, although yielding very informative re-
sults, misses the aspect of load balance, but we deferred its treatment to this
chapter. An alternative approach, which we adopted in (Björnemo et al.,
2006), is to study energy efficiency and network load imbalance in parallel.
However, it has not been clear how these two metrics should be combined to
give a fair overall judgement, nor is it clear how the network lifetime metric
combines these metrics. As the choice of multi-hop in place of single-hop
alters both the overall energy consumption and the distribution of the load,
it appears that a network-wide assessment must include both aspects.

Now it seems that our notion of measurement capacity provides a method
for combining both aspects and shows us a constructive way to assess the
network-wide impact of the transmission choice. In this section we therefore
readdress the choice between single-hopping and multi-hopping under the
utility criterion of measurement capacity as given by Definition 8.1. In short,
we find the following:

• There is no distinct threshold transmission-to-processing ratio ρ be-
tween multi-hop and single-hop: the measurement capacity expression
in (8.3) is ‘well-behaved’ and continuous in the nm. Hence, there is a
gradual transition from the use of direct to-the-sink transmissions to
the use of alternative routes via other nodes as the transmit conditions
change.

• Sensing energy consumption (the energy it costs to take one measure-
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ment) plays a determining role in the choice between multi-hop and
single-hop. Counter-intuitively, it is when sensing requires little en-
ergy relative to the communication that single-hop is preferable, while
multi-hop is favoured by energy intense sensors. Simplifying matters
a little, the measurement capacity metric cares about measurements,
not energy, and when a relay operation costs many measurements we
should refrain from it.

• Shadowing by in-network obstacles can promote the use of multi-hop
in a stronger manner than short hops. Multi-hop provides in shadowed
networks alternative paths that can save transmission energy.

• Hierarchical solutions with heterogeneous nodes can increase a net-
work’s measurement capacity significantly.

8.2.1 Optimised multi-hop routing

Consider a two dimensional wireless sensor network comprising M identical
sensor nodes and one central sink to which all the measurements are sent,
see Figure 8.1. We assume the application is such that the measurement
space coincides with the individual nodes. Sensor nodes are numbered m =
1, 2, . . . ,M while the sink is referred to as the zeroth node, m = 0. Let

(am, bm) ≡ Cartesian location of node m,

(a0, b0) ≡ (0, 0), sink is located in the Cartesian origin,

dkm ≡
√
(ak − am)2 + (bk − bm)2 is the inter-node distance,

nm ≡ the number of measurements taken by node m,

zkm ≡ number of measurements sent from node k to node m,

Em ≡ energy available to node m,

E0 ≡ ∞.

(8.15)

Next, we state the objective (O) of the optimisation, its constraints (C) and
the network and node parameter assumptions (A).

O: Objective function

For a given deployment of M nodes at positions {(am, bm)}M
m=0 we now wish

to find the routing pattern zkm, k = 0, 1, 2, . . . ,M and m = 0, 1, 2, . . . ,M ,
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Figure 8.1: Illustration of the two-dimensional network considered for op-
timised multi-hop routing with the parameters in (8.15).

which maximises the measurement capacity C in (8.3),

O: max
zkm

N log (N)−
M∑

m=1

nm log (nm) , (8.16)

where N =
∑

nm. These nm are related to the routing pattern zkm through
the following constraints.

C: Constraints on routing and energy

The constraints on the optimisation are the following:

Non-negative flows. Flows of data (measurements) are non-negative,

C1: zkm ≥ 0. (8.17)
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Sources and sinks. All sensor nodes are sources and can not absorb mea-
surements,

C2a: nm =

M∑
k=1

(zmk − zkm) ≥ 0. (8.18)

The central sink only receives measurements and has zero outgoing
flow,

C2b: z0m ≡ 0, (8.19)

but absorbs all other flows,7

C2c: n0 =

M∑
k=1

zm0 = N. (8.20)

Energy. Sensing (performing a measurement), sending and forwarding con-
sumes energy and the activities are constrained by Em, the energy
resource of node m. Therefore, feasible routing patterns do not violate

C3: Em ≥ nmES +

M∑
k=1

zkmEPr +

M∑
k=1

zmk (EPt + ET,mk) , (8.21)

where ES is the sensing energy per measurement, EPr is the radio recep-
tion processing energy, EPt is the radio transmission processing energy
and ET,mk is the node m to node k transmission energy (see Section 2.1
for definitions).

By maximising (8.16) under the constraints C1-C3 in (8.21)-(8.18) we will
gain insight into how different sensing and communication costs affect the
optimum routing choice with respect to the measurement capacity C in (8.3),
and under what circumstances multi-hopping might provide benefits.

A: Assumptions and parameters

The optimum routing solution will depend on the energy parameters in
(8.21), the characteristics of the communication channel and the sensor node
positions.

7The constraint in (8.20) is actually superfluous as the sink, naturally, is the only place
measurements can finally go.
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Energy ratios. The energy trade-off between sensing, forwarding and di-
rect transmission depends only on the relative sizes of ES, EPr, EPt and
ET,km. Recall therefore from (2.7) the transmission-to-processing ratio

ρkm =
ET,km

EPt
, (8.22)

which here is different for every node pair (k,m). All our numerical
results will however be given with reference to a single transmission-
to-processing ratio, without subscript, namely the largest node-to-sink
ratio

ρ = max(ρk0), (8.23)

corresponding to the node having the worst single-hop transmission
conditions. Also recall from (2.9) the receiver-to-transmitter processing
ratio α, which here will be assumed to be one,

A1: α =
EPr

EPt
= 1, (8.24)

respectively. The additional, and important, ratio that we consider is
the sensing-to-processing ratio

ξ ≡ ES

EPt
. (8.25)

Energy-wise, we finally include the power amplifier degradation model
(2.14) which states that savings in the radiated energy are diminished
by decreased efficiency,

ET = ET,max

( Erad

Erad,max

)1/g

, (8.26)

where we will use the exponent g = 2 as in previous chapters.

Radio channel. For brevity, we will exclude the impact of small-scale fad-
ing and assume that the channels are static over time: the small scale
fading gain of (2.22) is constant,

A2: xf ≡ 1. (8.27)

In addition, also for brevity, we restrict ourselves to the median prop-
agation loss exponent

A3: κ = κmed = 3.315, (8.28)
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see Section 2.4.2. The uncertainty regarding the degree of fading and
the propagation loss exponent is of course still present, but to sim-
plify our present exposition we suppress it for the moment and ask
the reader to bear this in mind. We will on the other hand include
shadowing effects, which in a static-channel scenario amounts to in-
clusion of stationary objects causing spatial variations in the channel
gain. The possibility to bypass such obstacles will affect the usefulness
of multi-hopping, and when we now consider two-dimensional sensor
networks this aspect becomes important. In summary, referring to the
channel model (2.22) on page 29 and Assumptions 2.7 and 2.8, we will
use the time-invariant node k to node m channel gain

xkm = xs,km

(
dkm

d0

)κmed

, (8.29)

where xs,km is the log-normal shadowing and d0 is a reference distance
in the propagation loss model. All shadowing effects xs,km are assigned
independent probability distributions for simplicity, but observe that
this might be unrealistic because long transmissions can be assigned a
larger channel gain xkm than a short transmission along the same line.
We comment further on this when considering the numerical results.

Normalised distances. Since we only consider one propagation loss expo-
nent we can disregard the scaling effects that actual distance has on
the normalised relay-node density and the possibilities to multi-hop –
analysed in Section 6.5.2. We therefore normalise the network area to
the unit square and work with normalised node positions

A4:
−1 ≤ ăm ≤ 1,

−1 ≤ b̆m ≤ 1,
(8.30)

corresponding to the absolute positions am and bm in (8.15). For this
reason, we need not specify d0 in (8.29) and can simply use

A5: xkm = xs,kmd̆κmed , (8.31)

to capture the effects from propagation loss and shadowing.

Continuous approximation. While the hop pattern zkm in the present
formulation of the problem should be discrete-valued, we have used a
real-valued approximation

A6: zkm ∈ R, (8.32)
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to speed up the optimisation. Thanks to the large nm – typically nm >
1000 in the settings we have tested – the continuous approximation is
conjectured to have a minor impact on the results.

Miscellaneous. No packet aggregation or data fusion is assumed. No power
control or diversity scheme is needed because of the static channel. No
error correcting codes are used.

Optimisation procedure

We have used a series of local optimisations i = 1, 2, . . . K starting from small
transmission-to-processing ratios ρ(1) < 1, which are known to yield a single-
hop solution, stepping up through intermediate transmission-to-processing
ratios ρ(i), ending in ρ(K). In each step i, the previous optimum solution
zkm,opt(i − 1) has been used as the initial search point. In this way we have
obtained information on the gradual increase in multi-hopping. The Math-
ematica search routine FindMaximum was used for the local searches, but
we have also checked the first and the last results zkm,opt(1) and zkm,opt(K)
with the global search routine NMaximize and they have always agreed. See
Wolfram Research Inc. (2007) for more details about FindMaximum and
NMaximize.

All optimisation results given below were obtained with

ρ(i) = 0.25(i − 1), i = 1, 2, . . . , 200, (8.33)

yielding a range of transmission-to-processing ratios ρ ∈ [0.25, 50]. Remem-
ber that ρ(i) always refers to the node with the worst single-hop conditions,
be it due to long distance d̆k0 or severe shadowing xs,k0 in (8.31).

8.2.2 Trading off sensing and communication energies

Consider first the sensing-to-processing ratio ξ in (8.25) and let us study its
impact on the optimum hop pattern zkm. We postpone the shadowing effects
till the next section, and let

xs,km ≡ 1 (8.34)

for now, see (8.31). In Figure 8.2 we show the optimum hopping patterns
zkm pertaining to a 36 node randomly deployed network, M = 36, with
initial battery energies corresponding to 105 EPt,

Em = 105EPt. (8.35)
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We study the optimum hopping patterns for transmission-to-processing ra-
tios ρ ∈ [0.25, 50] and sensing-to-processing ratios ξ ∈ {1, 10, 100}, but the
results for ξ = 1 are not shown as multi-hopping was never observed for this
sensing-to-processing ratio. The transmission-to-processing ratio ρ refers to
the node farthest away from the sink, so all other nodes will have smaller
transmission-to-processing ratios. Arrows are shown for all data flows that
constitute more than one thousandth of the nodes total number of measure-
ments, that is, for

zkm ≥ nk

1000
. (8.36)

This is to suppress all paths that are not in use, but for which the numerical
optimisation still returns a non-zero value: typically these zkm are of the
order of 10−7 due to numerical errors.

We observe the following:

• For a sensing-to-processing ratio ξ = 100, there is a steady tendency
to increase the number of hops as ρ increases. For ρ = 10, seven nodes
exclusively utilise relays (the first hop was observed for ρ = 6.25).
When ρ = 50, there is basically a full multi-hop structure (only one far-
away node still sends part of its data directly to the sink). These results
are consistent with the energy-efficiency results in Chapter 6 where the
use of multi-hop, under similar transmission conditions, turned out to
be preferable when transmission-to-processing ratios exceeded ρ ≈ 7,
see Figure 6.1 and Figure 6.2.

• For a sensing-to-processing ratio ξ = 10, there is no or very little multi-
hopping for transmission-to-processing ratios ρ < 10, but for ρ = 20
multi-hop routes start to open up. However, they are often used in
conjunction with a single-hop route, showing some ‘hesitation’ to use
multi-hop. Even more strikingly, for ρ = 50 the node in the lower left
corner actually gives up its multi-hop route and reverts back to direct
transmissions only.

• For a sensing-to-processing ratio ξ = 1, the single-hop approach was
optimal throughout the range of transmission-to-processing ratios stud-
ied. For this reason the results are not included in Figure 8.2.

Clearly, dominating transmission energy is not enough to motivate the use
of multi-hop. The sensing-to-processing ratio ξ has very strong influence on
the choice of routing pattern zkm.
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(a) ξ = 100, ρ = 10 (b) ξ = 10, ρ = 10

(c) ξ = 100, ρ = 20 (d) ξ = 10, ρ = 20

(e) ξ = 100, ρ = 50 (f) ξ = 10, ρ = 50

Figure 8.2: Optimised hop patterns zkm for a randomly deployed M = 36
node network. No shadowing, propagation loss exponent κ = 3.315, power
amplifier degradation exponent g = 2.
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Figure 8.3: Improvement ΔC in measurement capacity C with respect to
strict single-hopping, see (8.37), achieved by optimised multi-hop routing.
Observe the different scales on the horizontal axes in the two figures.

The relative improvement in measurement capacity C achieved by opti-
mised routing with respect to a single-hop structure (SH) is

ΔC ≡ Copt − CSH

CSH
. (8.37)

In Figure 8.3 we show the achieved improvements ΔC in measurement ca-
pacity, as a function of the transmission-to-processing ratio ρ, for the two
sensing-to-processing ratios ξ ∈ {10, 100} The relative increase in measure-
ment capacity for ξ = 1 was mostly negative and only a product of numerical
errors, typically ΔC 
 10−10, and therfore these results are not presented.
In effect, the results in Figure 8.3 confirm what we found from the hopping
patterns, that the sensing-to-processing ratio ξ is highly influential. Espe-
cially for ξ = 10 is this evident: when the transmission-to-processing ratio
ρ grows larger than ξ its multi-hop promoting effect diminishes. The reader
might react to the seemingly minute increases ΔC, but one must understand
that C is typically large and even a small relative improvement can be signifi-
cant. For instance, C ≈ 106 for ξ = 10 and ρ = 1, so the difference Copt−CSH

was on the order of 102 − 103.
The explanation to the, perhaps, counter-intuitive results8 lies in the fact

that our measurement capacity C, loosely speaking, tells us that the number
of measurements nm are important, not energy per se. Therefore, when
sensing energy ES is relatively small, a large cost in terms of measurements
is incurred to any node acting as a relay. So even if a far-away node, to

8At least they were a surprise to the author, and a lot of unnecessary debugging was
undertaken to find the cause of what was first believed to be an error in the calculations,
but turned out to be an important aspect of the problem.
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which transmission of a measurement is quite costly, can save more energy
than the relay has to spend, the measurement cost is far larger than the
relay is allowed to accept by the objective function. Here, the goal of energy
efficiency, or rather, measurement efficiency, takes precedence of the goal of
balancing.

8.2.3 Shadowing and bypassing obstacles

We have now seen that the transmission-wise energy gains achieved by
short hops are not enough to motivate multi-hopping when the sensing-to-
processing ratio ξ is small relative to the transmission-to-processing ratio ρ.
But in many sensor network applications we can expect to have obstacles
shadowing the transmission paths between sensors, and as such shadowing of
the communication signals can be of significant magnitude we anticipate that
the possibility to bypass obstacles can be used successfully. Let us therefore
study the effects of shadowing on the optimum hopping patterns zkm.

In Section 2.4.3 we quantified our uncertainty regarding the log-normal
shadowing effects. More specifically, under the log-normal shadowing frame-
work of Assumption 2.7, we assigned a probability distribution (2.81) for the
shadowing standard deviation σdB with median σdB,med = 3.88, 10th per-
centile σdB,10 = 1.40 and 90th percentile σdB,90 = 8.36. By the use of these
three values we can study the impact of shadow fading over a range of likely
values of σdB, the parameter determining the severeness of the shadowing.

In Figure 8.4 we find optimum hop patterns for a sensing-to-processing
ratio ξ = 10. This value of ξ was chosen because it most clearly highlights
the impact of the sensing energy on the hopping patterns, see Figure 8.2.
For comparability, all results were obtained using the same shadowing pat-
tern but scaled according to the standard deviation σdB. The left column
in Figure 8.4, panels 8.4(a), 8.4(c) and 8.4(e), displays the results for a
transmission-to-processing ratio ρ = 6. The right column in Figure 8.4,
panels 8.4(b), 8.4(d) and 8.4(f), displays the results for a transmission-to-
processing ratio ρ = 50. Observe that, due to shadowing the worst conditions
for direct transmission occurs at different nodes for different σdB. Therefore,
ρ refers to different nodes: for small shadowing effects – see panels 8.4(a)
and 8.4(b) – it is the distance from the sink that dominates, while large
shadowing effects can dominate the impact of distance – see panels 8.4(e)
and 8.4(f).

We observe the following:

• Shadowing effects lower the threshold for multi-hop because the nodes
with shadowed direct paths zk0 to the sink can use multi-hop paths
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(a) ξ = 10, ρ = 6, σdB = 1.40 (b) ξ = 10, ρ = 50, σdB = 1.40

(c) ξ = 10, ρ = 6, σdB = 3.88 (d) ξ = 10, ρ = 50, σdB = 3.88

(e) ξ = 10, ρ = 6, σdB = 8.36 (f) ξ = 10, ρ = 50, σdB = 8.36

Figure 8.4: Optimised hop patterns zkm for a randomly deployed M =
36 node network. Propagation loss exponent κ = 3.315, power amplifier
degradation exponent g = 2.
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zkm with significantly better channel gains xkm  xk0, see (8.31).
The transmission gains are then substantially larger than in a non-
shadowed environment: it is simply the possibility of bypassing ob-
stacles that multi-hopping can exploit. This bypassing effect becomes
more pronounced the amount of shadowing, as given by σdB, increases.

• The results show the balancing effect built into the measurement capac-
ity criterion (8.16), an effect that did not appear in the non-shadowed
case. The nodes suffering from severe shadowing are helped to avoid
that their ‘cells’ are under-covered which would decrease the mea-
surement capacity too much. In particular, this effect is evident in
panel 8.4(e) where two nodes utilise several neighbours to improve the
situation.

The relative capacity increase ΔC, see (8.37), achieved by optimum rout-
ing is larger in shadowed than in non-shadowed environments. We observe
this by comparing Figure 8.5 with Figure 8.3(b), where the non-shadowed
result for sensing-to-processing ratio ξ = 10 is given. There is indeed a sig-
nificant difference and the multi-hop scheme is apparently coming to much
better use in shadowed environments, although it still requires quite large
transmission-to-processing ratios ρ to show significant benefits.

8.2.4 Summary of optimised multi-hop routing

As far as the measurement capacity C of (8.3) is adequate for the application
at hand, we have support for the following conclusions regarding multi-hop
in energy-constrained wireless sensor networks.

1. The sensing-to-processing ratio ξ in (8.25) plays a decisive role in the
choice between single-hop and multi-hop. It is when ξ is small com-
pared to the communication processing costs that multi-hop performs
the worst. Forwarding data is then too costly in terms of measure-
ments, which under the measurement capacity metric is the currency
of the trade, even if energy can be saved. Applications with low-power
sensors are therefore, most likely, better served by single-hop struc-
tures.

2. Shadowing can make multi-hop much more attractive through the pos-
sibility to bypass, hop around, the shadowing objects. The technique
then plays a “life-saving” role which is appreciated by the measurement
capacity metric: to avoid severe imbalance it is beneficial to help the
nodes suffering most from shadowed direct paths to the sink. Note
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Figure 8.5: Improvement ΔC in measurement capacity C achieved with
respect to strict single-hopping by optimised multi-hop routing.
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however that when the shadowing becomes too severe, like in Fig-
ure 8.5(c), the gain decreases. This is probably because it then takes
too much resources to help the shadowed nodes. In any case, the mea-
surement capacity gains achieved by multi-hop are significantly larger
in shadowed than in non-shadowed environments.

8.3 Heterogeneous and hierarchical sensor networks

The larger the network becomes spatially, the less efficient it will become. In
the present study, the measurement capacity C in (8.3) decreases consistently
with increasing energy consumptions for sensing ES, radio processing EPr and
EPt, and transmission ET (see (8.21)). All energy costs reduce the number
of remaining measurements per node and hence the measurement capacity,
and large networks will suffer from large communication costs no matter how
we choose to look at it. Several authors have studied the energy imbalance
problem and found, like Perillo et al. (2004), that the imbalance problem can
not be alleviated in large many-to-one networks at less than severely energy
inefficient operation. From the slightly different viewpoint of throughput in
an any-to-any network, Gupta and Kumar (2000) found that the throughput
per node (user) invariably diminishes with an increasing number of nodes.

If the problem can not be alleviated, can it be countered? Considering
many-to-one data gathering networks, one commonly proposed solution is
uneven energy, or node, deployment to match the energy resources to the
communication load (Prasad and Agrawal, 2007, Rivas et al., 2006). An-
other, and we believe more promising, approach is to use a second layer of
nodes which act as sinks to the sensor nodes, forming smaller subnetworks.
Such hierarchical network structures employing heterogeneous node types
has been studied in several network contexts, but we defer our short dis-
cussion of these till Section 8.3.2 and now briefly assess the impact that a
hierarchical structure9 may have on the network’s measurement capacity C.

8.3.1 Measurement capacity in hierarchical heterogeneous
networks

Consider a network of 100 nodes spread uniformly over a square region with
the sink in the middle. Let the measurement capacity it can achieve by
optimised multi-hop routing be denoted Cflat. Then divide, conceptually, the

9Observe that by hierarchical we mean a structure in layers, or tiers. The use of
different node types in the upper and lower layers makes it a heterogeneous hierarchical
network.
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network into four quadrants and place a sink in the middle of each of the four
sub-networks. Denote their respective sensing capacities Ck, k = 1, 2, 3, 4.
According to the hierarchical measurement capacity formulas in (8.4)-(8.6)
we can express the hierarchical measurement capacity

Chier = C′K +
4∑

k=1

Ck, (8.38)

where C′K is the measurement capacity of the four-cell super-network, see
(8.5). Initial optimisation show that the improvement in measurement ca-
pacity is significant. For the above example we have found that

ΔC = Chier − Cflat

Cflat

≈
{
0.3 , ρhier = 5,
0.6 , ρhier = 16,

(8.39)

where ρhier is the transmission-to-processing ratio. More simulations need
to be performed to verify the validity these figures, but we feel it is safe to
say that the improvement is clear (especially in comparison with the odd
percent achieved by optimised multi-hop routing, see Figure 8.3). It is not
surprising that the four extra support nodes improve the network’s perfor-
mance, but our aim is not to make a fair comparison but to illustrate the
possible improvements in measurement capacity achievable by hierarchical
networks.10 Below we will argue that heterogeneous hierarchical sensor net-
work structures are strongly supported by our results, but before we do so
we note an important consequence of a hierarchical structure with single-hop
sub-networks:

In a hierarchical network structure where the low-level sensor
nodes report directly to the local sink, energy efficiency is re-
instated as the proper assessment metric of the communication
schemes. Hence, our point-to-point results for energy efficient
communication under processing costs have direct bearing on the
design choices for local node-to-sink communication.

10Mhatre et al. (2005) has performed a study of hierarchical heterogeneous sensor net-
works where the monetary cost was constrained, and this led to trade-offs between having
many small and cheap sensor nodes and having the support from the more powerful nods.
A comparison in their spirit would be more fair, but is outside our present scope.
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8.3.2 Our results support heterogeneous hierarchical net-
works

Let us begin with some commonly noted benefits that heterogeneous hierar-
chies can bring, and then look at the obvious objections and how our results
relate to these matters.Gnawali et al. (2006)

• Routing is obviously simplified considerably

• Synchronisation and sleep scheduling is simplified because each sensor
has only one sink to synchronise to.

• Data (measurement) processing can be more energy efficient by ex-
ploiting processing hierarchies Tsiatsis et al. (2005).

• Imbalances in communication burden is easier to counter through smart
deployment because upper layer nodes are fewer in numbers.

• Communication protocols can be chosen for inter-operability in higher
levels and for energy-efficiency on lower levels.

• Hierarchical structures naturally support scalability better than flat
network structures do.

• Sensing can be performed at different levels of sophistication and en-
ergy cost, yielding overall benefits Tsiatsis et al. (2005).

Many of the benefits mentioned above are due to the fact that we essen-
tially add more capability and resources though the local sinks – the higher
level nodes – and concentrate much of the responsibility and activity to them.
This fact may have negative consequences.

Cost. The monetary costs of the higher levels should be included in an
overall analysis to judge the achievable gains from hierarchies at a given
monetary cost. The question is if the expensive higher levels nodes are
worth the resulting decrease in the number of low level nodes. Mhatre
et al. (2005) have studied this trade-off.

Robustness. A possible drawback with heterogeneous hierarchical networks
is that failure of one higher level node can cause significant damage to
the network as the coverage of a large area relies on its operation.
Robustness of flat networks to node failures is often put forward as a
major advantage of their distributed nature.
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Energy. The local sinks can generally be expected to have limited energy
resources, and considering the heavy load they must carry this limita-
tion might prove prohibitive to heterogeneous hierarchical networks.

The mentioned problems must be seriously considered by anyone thinking
about a heterogeneous hierarchical network. Our general comment to these
matters, before turning to the more specific results in our research, are the
following:

Sensing-communication decoupling. Due to the poor scaling behaviour
of communication performance in large flat networks, there will be a
conflict between the sensing application and the wireless communica-
tion when networks grow large. Communication aspects can impose a
deployment which from the sensing point of view is highly sub-optimal.
For instance, the problem of unbalanced communication load can be
countered by deploying more sensors in the most loaded areas (Prasad
and Agrawal, 2007, Rivas et al., 2006), but such an uneven node den-
sity is almost surely not optimal in terms of sensing performance. The
use of heterogeneous and hierarchical networks nicely decouples the
low-level sensing task from the overall communication problems, and
also simplifies adequate deployment of communication nodes as they
are significantly less in numbers. This fact might, in conjunction with
easier maintenance of higher level nodes, result in lowered costs in the
long run.

Predictability. The communication performance, and hence also the sens-
ing performance, of flat networks with a multi-hop structure is very
difficult to predict. Hierarchical networks are much more predictable
in this respect, and this may be utilised to improve robustness. Other
aspects are given by Gnawali et al. (2006).

Energy harvesting. Higher level nodes that are decoupled from the low
level sensing task can be positioned in a way that improves their energy
harvesting possibilities, that is their possibility to live from ambient
energy resources such as sunlight, vibrations and heat. This may lower
the maintenance cost to an acceptable level.

Communication hierarchies

Considering the results we have presented in Chapters 4 through 7, we ob-
serve the following regarding heterogeneous hierarchical networks.
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Transmission-to-processing ratio. As we have observed repeatedly, the
energy optimal choice of transmission strategy tends to concentrate the
transmission-to-processing ratio

ρ =
ET

EPt
(8.40)

to values in the range ρ ∈ [0.5, 10]. This concentration loosely de-
fines, for a given, hardware-specific, transmit processing energy EPt a
maximum network size in which single-hopping will be favourable to
multi-hopping. Therefore, as soon as the network becomes larger than
this size, multi-hopping should be applied, but then we might as well
hop to a local sink.

Match capabilities to needs. Power control, error correcting codes and
receiver polarisation diversity saves energy at the transmitter while the
largest energy costs has to be payed by the receiver. In a heterogeneous
hierarchical network the receiver is most of the time a higher level
node, saving energy for a lower level node. Lower level nodes are
generally harder to reach, if it is even possible, to refill energy due
to their placement, and also the node type present in the greatest
numbers. Hierarchies thus open up for a better match between the
needs and the capabilities at each level: low level nodes can use the
simplest, most processing efficient, techniques while the local sinks
possibly use more sophisticated schemes to improve the performance.
Moreover, communication on higher levels is almost by definition suited
for processing intensive communication schemes like multi-hopping and
cooperative MIMO because of the longer transmission distances.

Multi-hop and aggregation. We saw in Chapter 6 that one exception to
the rule that multi-hop requires large transmission-to-processing ratios
to outperform single-hop was applications where significant data fusion
effects could be exploited. For a hierarchical network this possibility
remains a good source of energy saving, but this time to the higher
level nodes (without incurring any energy costs at the lowest level).

We conclude from this that heterogeneous hierarchical data gathering net-
works facilitates a match between communication needs and energy resources.
In the design of such a network the results of Chapters 4 through 7 will come
to good use. Paraphrasing on the early “smart dust” description of sensor
nodes, we would now prefer to promote the design principle of “dumb dust
and smart network structures”. Let the sensors sense, and the other nodes
communicate.
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Measurement capacity

The results of the present chapter, based on the notion of measurement
capacity, lead us to the following remarks pertaining to heterogeneous hier-
archical networks:

Increased measurement capacity. Our initial results show a significant
increase in measurement capacity by the introduction of local sinks.
This is achieved by a combination of reduced and more uniform trans-
mission costs throughout the low-level network. And, it is the low-level
nodes that do the sensing.

Scalable hierarchical scheduling. The measurement capacity C in (8.3)
is a combined resource pertaining to the network as a whole. This
resource metric is therefore suitable in optimal scheduling of measure-
ments, because we can determine the resource cost of performing cer-
tain tasks. Now, considering the hierarchical property (8.4) of the met-
ric, it appears suitable for use in hierarchical scheduling. Higher levels
schedule according to the measurement capacity Ck and the number of
measurements Nk of the cells below them, and the local sink schedules
according the number of measurements nmk

that each node has left.

Sink diversity and shadowing. Shadowing will affect the measurement
capacity negatively by reducing the number of measurements nm that
a shadowed node can report. We saw in Figures 8.4 and 8.5 how multi-
hop under these circumstances facilitated a sizeable increase in the
measurement capacity by opening alternative paths around obstacles.
In a hierarchical network, the local sinks will, if deployed at suitable
positions, provide path diversity for the sensor nodes. Especially the
sensor nodes located midway between local sinks will benefit from such
path diversity.

8.4 Summary

The concept of measurement capacity given in Definition 8.1 offers, to the
best of our knowledge, an entirely new way of assessing network performance.
It is suited for scenarios in which the network can be used in many different,
unpredictable ways. Be it dictated by the sensing application, event detec-
tion for instance, or by the user(s) having different needs at different times.
By measuring the ‘volume’ of the space of possible scenarios to which the
network can respond satisfactorily, the measurement capacity C constitutes
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a network-wide metric of how well-armed the network is to meet upcoming
events/requests.

The key to successful use of the measurement capacity in sensor network
design is the definition of the ‘cells’, the present counterpart to the hypoth-
esis space of an inference problem, since a bad choice of cells can never be
compensated for. We are unsure as to how large the range of suitable ap-
plications is, and this uncertainty stems solely from the problem with cell
definitions. Once, and if, a good choice of cells have been made we are confi-
dent that the use of the measurement capacity will yield sensible results. In
its relative simplicity, the foundation of the concept of measurement capacity
in terms of multiplicities to us appears as its major strength.

Two generalisations should be investigated. First, there will in reality
be uncertainty regarding the number of measurements nm per cell, and this
uncertainty should be taken into account. Probability theory as logic is well
suited for this. Second, in Appendix 8.A we outline a generalisation towards
multi-cell measurements.

By using the measurement capacity metric to assess multi-hop routing
and the impact of sensing energy consumption, we reached the counter-
intuitive conclusion that small sensing costs tend to favour the use of single-
hop structures, because the forwarding cost in terms of measurements then
reduces the network’s measurement capacity. The main benefit from multi-
hop appears to be the possibility to jump around obstacles in shadowed
environments. Under shadowing, the capacity gains from optimised multi-
hop routing over single-hop was significantly larger than under non-shadowed
conditions.

We also found that a substantial increase in measurement capacity can
be achieved by a second layer of nodes acting as local sinks. This was not
surprising, but together with the previous results in this thesis, and a wealth
of results in the literature, we think that there is a strong support for het-
erogeneous hierarchical sensor network structures.

In the immediate future, we deem an application of measurement capacity
to optimal search problems in hierarchical networks an interesting research
topic. This is because measurement capacity is the network-wide resource
which we can find ways to distribute optimally in terms of searches performed
by sensors. Without a central resource metric, the allocation of search effort
is harder to address, and to the best of our knowledge no other adequate
resource metric has been proposed.
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Appendix 8.A Possible generalisations

Similar to Rachlin et al. (2005), we also consider an underlying space of cells on
which our capacity metrics are defined. But, they consider the possibility of simul-
taneous events in different cells, while we consider sequences of single-cell measure-
ments. Let us point to two generalisations of our measurement capacity C in (8.3)
toward the model used by Rachlin et al. (2005).

Alternative 1. We still consider a network which can perform nm measurements
in each cell m = 1, 2, . . . , M , and a total number of measurements N =∑

nm. At each instant of interest, we could according to Definition 8.1 of
the measurement capacity C only make one measurement, but let us now
consider all possible distributions of the measurements over N instants (we
can think of N cells in time). No more than one measurement per node and
time instant is possible. In each cell, there is then

Wm =
N !

(N − nm)!nm!
(8.41)

different ways to perform measurements. Together, the network can respond
to

W =

M∏
m=1

N !

(N − nm)!nm!
(8.42)

different measurement distribution. Applying Stirlings approximation (2.38)
we can after some manipulations find that

log(W ) ≈ N

[
−

M∑
m=1

nm log(nm)−
M∑

m=1

(1− nm) log(1− nm)

]
, (8.43)

where nm = nm/N as before. In addition to the measurement capacity C,
which is the first term, we get an additional “entropy” term defined on 1−nm.
The metric in (8.43) incorporates the possibility to measure simultaneously
in many cells. However, it also comprises measurement instants when no
measurement is taken by any node.

Alternative 2. If we would only like to consider instants when one or more nodes
perform measurements, that is to say we consider an event-driven rather than
a time- driven scenario, we must incorporate the constraint that at least one
measurement per instant is performed. Unfortunately, we can not find a
tractable expression for this case, but we believe that it would adequate for
many sensing scenarios.





Chapter 9
Concluding Remarks

THE results in Chapters 3 through 8 provide relevant guidelines for the
design of wireless sensor network.

Radio design. We have repeatedly seen that the optimal choices of trans-
mission strategy tend to equalise the transmission processing energies, so
that the transmission-to-total-processing ratio ρ′ is neither excessively small,
nor large. We have also found that cooperative techniques, that is multi-
hopping and cooperative MIMO, become attractive for transmission-to-total-
processing ratios ρ′ > 5, approximately. Hence, radios should be designed
with a maximum transmission-to-total-processing ratio ρ′max > 5 to avoid
having to resort to cooperative techniques when they are energy-inefficient.

Transmission technique ordering. The most basic transmission is an
uncoded, fixed power, single-antenna, node-to-node single-hop transmission.
This choice is suitable for transmission-to-total-processing ratios ρ′ < 0.1.
Increasing the transmission-to-total-processing ratio ρ′, corresponding in a
broad sense to increasing the transmission distance, our results show that
transmit power control, polarisation receiver diversity and error correcting
codes become attractive for ρ′ ∈ [0.1, 0.5]. Their energy gains are fairly con-
sistent for transmission-to-total-processing ratios ρ′ > 0.5, and substantial
for ρ′ > 1. Increasing distance further, the three mentioned techniques can
be used to balance transmission and processing costs until the transmission-
to-total-processing ratio ρ′ ≈ 5. Then the energy efficient, non-cooperative,
range of transmission-to-processing ratios end, and multi-hop and coopera-
tive MIMO become attractive alternatives for ρ′ > 5. Of course, the coopera-

263



264

tive techniques are used in combination with the three non-cooperative tech-
niques. Observe that the use of transmit power control, error correcting codes
and receiver diversity extends the distance range over which non-cooperative
techniques are preferable, but keep the transmission-to-total-processing ratio
ρ′ limited. To do this efficiently the non-cooperative transmission techniques
must be adaptive, but the adaptivity can probably be coarse grained with
small amounts of feedback.

The impact of uncertainties. Different techniques are preferable un-
der different circumstances, and we are generally uncertain regarding the
exact conditions a sensor network will encounter. Hence, we can not find
sharp transmission-to-processing boundaries at which the considered tech-
niques ought to be applied. However, for transmission-to-total-processing
ratios ρ′ < 5 we can with confidence conclude that the non-cooperative tech-
niques are more energy-efficient than the the cooperative techniques – the
exception being applications for which significant data fusion and/or packet
aggregation is possible through the cooperation.

Hierarchical (tiered) networks. Our use of the network measurement
capacity – the number of possible measurement sequences a network has
capability to perform – revealed that the measurement-to-radio-processing
ratio has strong influence on the suitability of multi-hopping. When the
measurement energy is small with respect to the radio processing energy,
multi-hop cooperation costs too many measurements and should be refrained
from. We conjecture that this is true also for cooperative MIMO. Only in
shadowed environments did multi-hopping obtain a sizeable gain in mea-
surement capacity by circumventing obstacles and thereby reduce energy
consumption. However, the increase in measurement capacity achieved by
the use of a second layer of nodes, a second tier, was an order of mag-
nitude larger than achieved by optimised multi-hopping. A heterogeneous
hierarchical network obtains the large increase by increasing the number of
measurements and by equalising the load in the lower layer. Further, the
combined use of heterogeneous hierarchical networks and the measurement
capacity as a resource metric will facilitate efficient hierarchical scheduling,
exploiting the hierarchic properties of the measurement capacity.

Summary. In Figure 9.1 we provide an overview of our results and the
design guidelines which, we conclude, emerge from the results. First, we
note again the need for radios to have enough transmission power to cover
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Figure 9.1: Energy efficient ranges of transmission-to-total-processing ratios
ρ′ for different transmission techniques. Light grey areas show ranges of
certain savings, dark grey indicate uncertain savings. Layer I and Layer II
refers to hierarchical levels, indicating suitable transmission-techniques for
low-level and high-level communication.

the transmission-to-total-processing range up till ρ′ = 5, where cooperative
techniques become useful. Otherwise, there will be an “inefficiency gap”
between the radio capability and efficient use of cooperative techniques. This
gap is largely left open by existing radios. Second, we observe that our results
also give a natural “size” of the sub-networks in a heterogeneous hierarchical
approach, defined by the range over which non-cooperative transmission is
most energy efficient. Larger communication distances are taken care of
by higher layers which possibly can make efficient use of the cooperative
techniques. Voilà, we have a decoupling of the low-level sensing task from
the cooperative communication in a structure that still facilitates the use
of data fusion and packet aggregation. Summarising, our overall design
principle for energy constrained wireless sensor networks is well described
in the following way.

Dumb dust but smart networks
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